Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vermicompost from pig manure grows healthy hibiscus

14.12.2009
VC provides organic, economical replacement for conventional nutrients

Vermicomposting, the practice of using earthworms to turn waste into nutrient-rich fertilizer, can be an economical, organic waste management practice.

During vermicomposting, earthworms and microorganisms stabilize organic waste in an aerobic, moist environment. The resulting product, called vermicompost (VC), or worm castings, provides commercial and amateur growers an environmentally friendly alternative to conventional substrate additives for producing many varieties of container-grown plants.

A research team recently experimented with pine bark amended with vermicompost derived from pig manure to see if this organic alternative can produce healthy hibiscus.

Michelle S. McGinnis, lead researcher, explained that the purpose of the study (published in HortScience) was to determine if conventional nursery crop inputs could be replaced by commercially available vermicompost for hibiscus production. VC is currently marketed as a pine bark amendment to progressive nursery crop producers. Reported benefits include greater plant growth and flower production, improved water use efficiency, and sufficient levels of some plant-available nutrients.

The scientists grew hibiscus (Hibiscus moscheutos 'Luna Blush' L.) in containers containing pine bark amended with sand, dolomitic limestone and micronutrient package (PBS), or pine bark amended with 20% VC. Plants were topdressed with one of three controlled-release fertilizers (CRFs): only nitrogen; nitrogen and potassium; or nitrogen, phosphorus, and potassium (NPK). The PBS + NPK treatment, which was supplied with conventional nursery crop nutrient inputs, served as the control treatment to represent the industry standard.

Plants were harvested at 35 and 56 days after potting. Total plant nutrient contents of phosphorous, calcium, magnesium, sulfur, iron, manganese, zinc, copper, and boron were equivalent or greater by hibiscus-grown pine bark amended with vermicomposted pig manure (20% by volume) compared with plants grown with conventional nursery crop nutrient inputs. All three 20VC treatments averaged 58% and 40% greater plant dry weight than PBS + NPK, respectively, and 93% more flowers than PBS + NPK at 56 days after potting.

The research also established that the vermicompost treatment did not supply potassium equivalent to conventional CRFs; the authors recommend the addition of fertilizer potassium (K) to VC at a 20% amendment rate.

All treatments used equivalent volumes of water. "The drawback of greater effluent nutrient content when using a VC amended substrate could be offset by implementing best management practices, such as the reduction of leaching fraction and/or containment or capture of the effluent", noted McGinnis.

The study suggests that dolomitic lime, sulfated micronutrients, and phosphorous can be eliminated as substrate additives for hibiscus production.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/6/1698

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://ashs.org

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>