Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vermicompost from pig manure grows healthy hibiscus

14.12.2009
VC provides organic, economical replacement for conventional nutrients

Vermicomposting, the practice of using earthworms to turn waste into nutrient-rich fertilizer, can be an economical, organic waste management practice.

During vermicomposting, earthworms and microorganisms stabilize organic waste in an aerobic, moist environment. The resulting product, called vermicompost (VC), or worm castings, provides commercial and amateur growers an environmentally friendly alternative to conventional substrate additives for producing many varieties of container-grown plants.

A research team recently experimented with pine bark amended with vermicompost derived from pig manure to see if this organic alternative can produce healthy hibiscus.

Michelle S. McGinnis, lead researcher, explained that the purpose of the study (published in HortScience) was to determine if conventional nursery crop inputs could be replaced by commercially available vermicompost for hibiscus production. VC is currently marketed as a pine bark amendment to progressive nursery crop producers. Reported benefits include greater plant growth and flower production, improved water use efficiency, and sufficient levels of some plant-available nutrients.

The scientists grew hibiscus (Hibiscus moscheutos 'Luna Blush' L.) in containers containing pine bark amended with sand, dolomitic limestone and micronutrient package (PBS), or pine bark amended with 20% VC. Plants were topdressed with one of three controlled-release fertilizers (CRFs): only nitrogen; nitrogen and potassium; or nitrogen, phosphorus, and potassium (NPK). The PBS + NPK treatment, which was supplied with conventional nursery crop nutrient inputs, served as the control treatment to represent the industry standard.

Plants were harvested at 35 and 56 days after potting. Total plant nutrient contents of phosphorous, calcium, magnesium, sulfur, iron, manganese, zinc, copper, and boron were equivalent or greater by hibiscus-grown pine bark amended with vermicomposted pig manure (20% by volume) compared with plants grown with conventional nursery crop nutrient inputs. All three 20VC treatments averaged 58% and 40% greater plant dry weight than PBS + NPK, respectively, and 93% more flowers than PBS + NPK at 56 days after potting.

The research also established that the vermicompost treatment did not supply potassium equivalent to conventional CRFs; the authors recommend the addition of fertilizer potassium (K) to VC at a 20% amendment rate.

All treatments used equivalent volumes of water. "The drawback of greater effluent nutrient content when using a VC amended substrate could be offset by implementing best management practices, such as the reduction of leaching fraction and/or containment or capture of the effluent", noted McGinnis.

The study suggests that dolomitic lime, sulfated micronutrients, and phosphorous can be eliminated as substrate additives for hibiscus production.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/6/1698

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://ashs.org

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>