Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variation in antibiotic bacteria in tropical forest soils may play a role in diversity

28.10.2014

Antibiotic-producing bacteria in soil are the source of many antibiotics used to combat diseases in humans and plants. But, surprisingly little is known about how these microbes impact tropical plant communities and ecosystems, where plant diversity, competition, and pathogen pressures are high.

A study published October 28 in the journal Biotropica represents a step toward a better understanding of the role antibiotic-bacteria play in the ecology of tropical forests.


This is a dry tropical forest where soil samples were collected.

Credit: Dr. Jennifer Powers

University of Minnesota researchers, led by Kristen Becklund, found that antibiotic production by soil bacteria was widespread, but that the abundance and activity of the microbes varied across the landscape depending, in part, on nutrient availability.

"Our results suggest substantial differences in the capacities of microbial communities to suppress soil-borne diseases in tropical forests," says Becklund. "The fact that we are seeing all this variation is exciting because it means that these bacteria may be influencing diversity in tropical forests."

Differences in the capacities of microbial communities to suppress soil-borne diseases in tropical forests could impact the composition of the forest itself. Antibiotics in soil are believed to act as weapons that allow microbes to kill their competitors, including pathogens.

This antibiotic inhibition can lead to declines in populations of plant pathogens and can even result in the development of disease-suppressive soils. Because different plants are susceptible to different pathogens and diseases, variation in the abundance, effectiveness and specificity of microbially-produced antibiotics has the potential to influence not only plant disease and productivity, but also the composition of tree species in the forest.

"This study is an initial first step to open the black box of microbial community function in tropical forest soils," says Powers.

Future studies will focus on the causes of the variation in density and activity and the potential consequences for tropical forest communities.

Becklund is a graduate student in the College of Biological Sciences' Ecology, Evolution and Behavior program. Co-authors include Linda Kinkel, a professor in the Department of Plant Pathology in the College of Food, Agricultural and Natural Resource Sciences, and Jennifer Powers, a professor in the Departments of Ecology, Evolution and Behavior and Plant Biology in the College of Biological Sciences.

Stephanie Xenos | Eurek Alert!
Further information:
http://www1.umn.edu/twincities/index.html

More articles from Agricultural and Forestry Science:

nachricht How much soil goes down the drain -- New data on soil lost due to water
18.12.2017 | European Commission Joint Research Centre

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>