Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VAI Researchers Find Long Awaited Key to Creating Drought Resistant Crops

07.12.2009
Findings published in the journal Nature could help engineer hardier plants and have implications for stress disorders in humans

Van Andel Research Institute (VARI) researchers have determined precisely how the plant hormone abscisic acid (ABA) works at the molecular level to help plants respond to environmental stresses such as drought and cold.

Their findings, published in the journal Nature, could help engineer crops that thrive in harsh environments around the world and combat global food shortages. The findings could also have implications for stress disorders in humans.

VARI scientists have determined the structure of the receptors that plants use to sense ABA, a hormone that keeps seeds dormant and keeps buds from sprouting until the climate is right. Locating these receptors and understanding how they work is a key finding — one that has eluded researchers for nearly a half-century. This discovery is crucial to understanding how plants respond when they are under stress from extreme temperatures or lack of water.

“The plant community has been waiting for this discovery for many years,” said VARI Research Scientist Karsten Melcher, Ph.D., one of the lead authors of the study. “It could have major effects on nutrition and crop yields, especially as fresh water sources become scarcer.”

“The work by Dr. Xu and his colleagues, published in one of the most prestigious science journals in the world, will undoubtedly become known as an historic defining moment in our understanding of the mode of action of the important plant hormone abscisic acid,” said Grand Valley State University Plant Development Biologist Sheila A. Blackman, Ph.D. “They show how the signaling molecule and its receptor initiate a cascade of events that ultimately affects the expression of genes that are critical for a plant’s survival under harsh conditions. This work has enormous implications for global food supply.”

Melcher works in the VARI Laboratory of Structural Biology led by Distinguished Scientific Investigator H. Eric Xu, Ph.D. The lab began studying abscisic acid signaling in March this year because a proposed ABA receptor was reported to be a member of G-protein coupled receptors, a group of proteins that the lab studies. More than 50% of all drugs on the market target these proteins, but it has been extremely difficult to determine their atomic structure.

Xu’s laboratory uses a technique known as X-ray crystallography to determine exactly how and why the drug compounds work in molecular detail, which can then help drug developers engineer more potent drugs that have fewer unwanted side effects.

Although it later resulted that the abscisic acid receptors were found to be members of another protein family, Xu’s lab continued their studies on the newly identified ABA receptors. Their findings could help to develop crops that grow in drought, cold, salt water environments, and other harsh conditions, perhaps aiding in stemming or reversing food shortages around the world. Additionally, proteins central to ABA sensing are related to human proteins involved in cellular stress responses and may have implications for stress disorders in humans.

“Proteins with similarities to plant ABA receptors are also found in humans,” said Xu. “Further studies in this area could reveal important implications for people with stress disorders.”

The lab worked with specialists in plant biology at other institutions to validate the data, including the National Center for Plant Gene Research in Beijing, China, the Department of Botany and Plant Sciences at the University of California at Riverside, the Center for Plant Stress Genomics and Technology at the King Abdullah University of Science and Technology in Thuwal, Saudi Arabia, and the Department of Biochemistry at the Medical College of Wisconsin.

“A finding of this importance helps demonstrate how discoveries at the molecular level in plants can have profound implications for the diseases of humans.” said VARI President and Research Director Dr. Jeffrey Trent. “Remarkably Dr. Xu’s findings (made in only a few short months) will open a decade of research on both plants and man. From a key role in the ripening of fruit through increased understanding of how stress affects a myriad of diseases in man – this finding starts a new chapter in plant and animal biology.”

The project described was supported by Grant Number 1R01GM087413-01 from the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories, in laboratories in Singapore and Nanjing, and in collaborative partnerships that span the globe.

Joe GAvan | EurekAlert!
Further information:
http://www.vai.org

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>