Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA study confirms links between longer ragweed season and climate change

23.02.2011
Studies by a U.S. Department of Agriculture (USDA) scientist and cooperators have confirmed what many pollen-sensitive people already suspected: In some parts of North America, ragweed season now lasts longer and ends later.

Ragweed pollen in some parts of the northern United States and Canada now lingers almost a month longer than it did in 1995, and these increases are correlated to seasonal warming shifts linked to climate change dynamics in the higher latitudes, according to a study published Monday in the Proceedings of the National Academy of Sciences.

"One of the biggest challenges in studying climate change is finding out how the plant kingdom is adapting to increases in air temperature and other meteorological phenomena," said Agricultural Research Service (ARS) Administrator Edward B. Knipling. "Studies like this also show us that these ecological shifts don't stop at crop production. They can also have a significant impact on public health."

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of responding to climate change.

Assessments by the Intergovernmental Panel on Climate Change suggest that current and future increases in land-surface temperatures are more likely to occur at higher elevations and at higher latitudes. But definitive studies correlating warming temperatures, longer growing seasons, and increased plant pollination have been lacking.

Lewis Ziska, a plant physiologist with the ARS Crop Systems and Global Change Research Unit in Beltsville, Md., led a scientific team that identified 10 locations that had at least 15 years of data, from 1995 to 2009, on local ragweed pollen counts. These locations were along a north-south transect from Austin, Texas, to Saskatoon, Canada. The researchers compared the pollen data at each site to other site data, including latitude, the number of frost-free days, and delays in the onset of the first fall frost.

The researchers found that from 1995 to 2009, the number of frost-free days at higher-latitude study sites had increased, and so had the length of the ragweed pollen season. During that period, the pollen season lasted from 13 to 27 days longer than in 1995. They also found that a longer ragweed pollen season was strongly correlated with a delay in the onset of the first fall frost.

Other collaborators included researchers from the Natural Resources Defense Council; the University of Massachusetts at Amherst.; the Allergy and Asthma Care Center in Fargo, N.D.; Allergy & Asthma Specialists in Minneapolis, Minn.; the Oklahoma Allergy and Asthma Clinic in Oklahoma City, Okla.; the Asthma and Allergy Center in Omaha, Neb.; the Hedberg Allergy and Asthma Center in Rogers, Ark.; Children's Mercy Hospitals and Clinics in Kansas City, Mo.; the Allergy, Asthma, and Immunology Clinic of Georgetown in Georgetown, Texas.; Allergy Associates of La Crosse, Wis.; the University of Wisconsin-Madison; Aerobiology Research Laboratories in Ontario, Canada; Rutgers University; and HealthEast Care System in St. Paul, Minn.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Ann Perry | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research Allergy Asthma Georgetown USDA

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>