Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA scientists sequence genome of grass that can be a biofuel model crop

11.02.2010
Work will enable researchers to shed light on the genetics behind hardier varieties of wheat and improved varieties of biofuel crops

U.S. Department of Agriculture (USDA) scientists and their colleagues at the Department of Energy (DOE) Joint Genome Institute today announced that they have completed sequencing the genome of a kind of wild grass that will enable researchers to shed light on the genetics behind hardier varieties of wheat and improved varieties of biofuel crops. The research is published today in the journal Nature.

"Energy security looms as one of the most important scientific challenges of this century," said Molly Jahn, USDA Acting Under Secretary for Research, Education and Economics. "This important research will help scientists develop switchgrass varieties that are more suitable for bioenergy production by identifying the genetic basis for traits such as disease resistance, drought tolerance and the composition of cells."

The grass, Brachypodium distachyon, can be used by plant scientists the way other researchers use lab mice to study human disease – as a model organism that is similar to but easier to grow and study than important agricultural crops, including wheat and barley. The research also supports the USDA priority of developing new sources of bioenergy; the brachypodium genome is similar to that of the potential bioenergy crop switchgrass. But the smaller genome of brachypodium makes it easier to find genes linked to specific traits, such as stem size and disease resistance.

Brachypodium (pronounced bracky-POE-dee-umm) also is easier to grow than many grasses, takes up less laboratory space, and offers easy transformation, which means scientists can insert foreign DNA into it to study gene function and targeted approaches for crop improvement in the transformed plants, said John Vogel, a lead author and molecular biologist with the Agricultural Research Service (ARS), USDA's chief intramural scientific research agency. Vogel works at the ARS Genomics and Gene Discovery Research Unit in Albany, Calif. ARS geneticist David Garvin at the agency's Plant Science Research Unit in St. Paul, Minn., is also a lead author on the paper.

A major stumbling block in using switchgrass or any perennial grass as a biofuel crop is the difficulty in breaking down its cell walls, an essential step in producing ethanol from cellulosic biomass. Brachypodium may hold the key to finding ways to produce plant cell walls that are easy to break down, Vogel said.

Vogel developed a method with a very high success rate for inserting genes into brachypodium. He, Garvin and their colleagues are spearheading efforts to promote brachypodium as an experimental model. They shared brachypodium seeds with more than 300 labs in 25 countries and gave scientists worldwide free access to a draft sequence of the brachypodium genome long before the work was formally published. The sequencing project was carried out through the DOE-JGI Community Sequencing Program.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C., 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD).

Dennis O’Brien | EurekAlert!
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>