Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA scientists sequence genome of grass that can be a biofuel model crop

11.02.2010
Work will enable researchers to shed light on the genetics behind hardier varieties of wheat and improved varieties of biofuel crops

U.S. Department of Agriculture (USDA) scientists and their colleagues at the Department of Energy (DOE) Joint Genome Institute today announced that they have completed sequencing the genome of a kind of wild grass that will enable researchers to shed light on the genetics behind hardier varieties of wheat and improved varieties of biofuel crops. The research is published today in the journal Nature.

"Energy security looms as one of the most important scientific challenges of this century," said Molly Jahn, USDA Acting Under Secretary for Research, Education and Economics. "This important research will help scientists develop switchgrass varieties that are more suitable for bioenergy production by identifying the genetic basis for traits such as disease resistance, drought tolerance and the composition of cells."

The grass, Brachypodium distachyon, can be used by plant scientists the way other researchers use lab mice to study human disease – as a model organism that is similar to but easier to grow and study than important agricultural crops, including wheat and barley. The research also supports the USDA priority of developing new sources of bioenergy; the brachypodium genome is similar to that of the potential bioenergy crop switchgrass. But the smaller genome of brachypodium makes it easier to find genes linked to specific traits, such as stem size and disease resistance.

Brachypodium (pronounced bracky-POE-dee-umm) also is easier to grow than many grasses, takes up less laboratory space, and offers easy transformation, which means scientists can insert foreign DNA into it to study gene function and targeted approaches for crop improvement in the transformed plants, said John Vogel, a lead author and molecular biologist with the Agricultural Research Service (ARS), USDA's chief intramural scientific research agency. Vogel works at the ARS Genomics and Gene Discovery Research Unit in Albany, Calif. ARS geneticist David Garvin at the agency's Plant Science Research Unit in St. Paul, Minn., is also a lead author on the paper.

A major stumbling block in using switchgrass or any perennial grass as a biofuel crop is the difficulty in breaking down its cell walls, an essential step in producing ethanol from cellulosic biomass. Brachypodium may hold the key to finding ways to produce plant cell walls that are easy to break down, Vogel said.

Vogel developed a method with a very high success rate for inserting genes into brachypodium. He, Garvin and their colleagues are spearheading efforts to promote brachypodium as an experimental model. They shared brachypodium seeds with more than 300 labs in 25 countries and gave scientists worldwide free access to a draft sequence of the brachypodium genome long before the work was formally published. The sequencing project was carried out through the DOE-JGI Community Sequencing Program.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C., 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD).

Dennis O’Brien | EurekAlert!
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>