Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USDA Research Demonstrates New Breeds of Broccoli Remain Packed with Health Benefits

14.10.2011
Research performed by scientists at the U.S. Department of Agriculture (USDA) and published recently in the journal Crop Science has demonstrated that mineral levels in new varieties of broccoli have not declined since 1975, and that the broccoli contains the same levels of calcium, copper, iron, magnesium, potassium and other minerals that have made the vegetable a healthy staple of American diets for decades.

"This research provides data on the nutritional content of broccoli for breeders to consider as they further improve this important vegetable," said Edward B. Knipling, administrator of the Agricultural Research Service (ARS), USDA's principal intramural scientific research agency. "The research demonstrates how ARS is helping to find answers to agricultural problems that impact Americans every day, from field to table."

A team of three scientists evaluated the mineral content of 14 broccoli cultivars released over a span of more than 50 years: ARS geneticist and research leader Mark Farnham at the agency's U.S. Vegetable Laboratory in Charleston, S.C.; plant physiologist Michael Grusak at the USDA-ARS Children's Nutrition Research Center (CNRC) in Houston, Texas; and Clemson University scientist Anthony Keinath.

The researchers grew the 14 cultivars in two field trials in 2008 and 2009, and harvested florets for testing.

"Our studies show that not much has changed in terms of mineral content in the last 35 years in a crop that has undergone significant improvement from a quality standpoint and that was not widely consumed in the United States before the 1960s," said Farnham.

Broccoli florets in the study were tested for levels of calcium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, phosphorous, sulfur and zinc. Results indicated significant cultivar differences in floret concentrations of calcium, copper, iron, magnesium, sodium, phosphorous and zinc, but not of potassium, manganese, molybdenum or sulfur. There was no clear relationship between mineral concentration and release year.

"For broccoli cultivars grown during the past 35 years, when hybrids became the standard cultivar, evidence indicates that mineral concentrations remain unchanged," said Farnham. "As broccoli breeders continue to improve this crop in the future, data from this study can serve as a very useful guide in helping breeders understand the variation in mineral concentrations they should expect among their breeding stocks and also provide a realistic baseline that should be maintained as other characteristics are manipulated in the future."

As USDA's chief scientific research agency, ARS is leading America toward a better future through agricultural research and information. ARS conducts research to develop and transfer solutions to help answer agricultural questions that impact Americans every day. ARS work helps to:

• Ensure high-quality, safe food and other agricultural products;
• Assess the nutritional needs of Americans;
• Sustain a competitive agricultural economy;
• Enhance the natural resource base and the environment; and
• Provide economic opportunities for rural citizens, communities and society as a whole.

Sharon Durham | EurekAlert!
Further information:
http://www.ars.usda.gov/is/pr/2011/111013.htm
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>