Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban Gardeners May Be Unaware of How Best to Manage Contaminants in Soil

02.04.2014

Consuming foods grown in urban gardens may offer a variety of health benefits, but a lack of knowledge about the soil used for planting could pose a health threat for both consumers and gardeners. In a new study from the Johns Hopkins Center for a Livable Future (CLF), researchers identified a range of factors and challenges related to the perceived risk of soil contamination among urban community gardeners and found a need for clear and concise information on how best to prevent and manage soil contamination. The results are featured online in PLOS ONE.

“While the benefits are far-reaching, gardening in urban settings can also create opportunities for exposure to contaminants such as heavy metals, petroleum products, and asbestos, which may be present in urban soils,” said Keeve Nachman, PhD, senior author of the study and director of the Food Production and Public Health Program with CLF.

“Our study suggests gardeners generally recognize the importance of knowing a garden site’s prior uses, but they may lack the information and expertise to determine accurately the prior use of their garden site and potential contaminants in the soil. They may also have misperceptions or gaps in knowledge about how best to minimize their risk of exposure to contaminants that may be in urban soil.

According to CLF researchers, urban soils are often close to pollution sources, such as industrial areas and heavily trafficked roads. As a result, many soil contaminants have been found at higher concentrations in urban centers.

To characterize urban community gardeners’ knowledge and perceptions of soil contamination risks and reducing exposure, researchers conducted surveys among urban community gardeners and semi-structured interviews with key informants in the gardening community in Baltimore, Maryland. Informants included individuals whose job function or organizational affiliation makes them knowledgeable about Baltimore City community gardening and soil contamination.

“People may come into contact with these contaminants if they work or play in contaminated soil, or eat food that was grown in it. In some cases, exposure to soil contaminants can increase disease risks, especially for young children,” said Brent Kim, MHS, lead author of the paper and a program officer with CLF. “Given the health, social, environmental and economic benefits associated with participating in and supporting urban green spaces, it is critical to protect the viability of urban community gardens while also ensuring a safe gardening environment.”

For more information, including resources for urban farmers and gardeners, please visit the Center for a Livable Future’s Urban Soil Safety page.

“Urban Community Gardeners’ Knowledge and Perceptions of Soil Contaminant Risks” was written by, Brent Kim, Melissa Poulsen, Jared Margulies, Katie Dix, Anne Palmer and Keeve Nachman.

The research was funded in part by Johns Hopkins Urban Health Institute and the GRACE Communications Foundation. The research was conducted in partnership with the Community Greening Resource Network.

Natalie Wood-Wright | newswise
Further information:
http://www.jhu.edu

Further reports about: Gardeners Greening Health Soil Urban Soils contaminants exposure food production resources soils

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>