Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Urban Gardeners May Be Unaware of How Best to Manage Contaminants in Soil


Consuming foods grown in urban gardens may offer a variety of health benefits, but a lack of knowledge about the soil used for planting could pose a health threat for both consumers and gardeners. In a new study from the Johns Hopkins Center for a Livable Future (CLF), researchers identified a range of factors and challenges related to the perceived risk of soil contamination among urban community gardeners and found a need for clear and concise information on how best to prevent and manage soil contamination. The results are featured online in PLOS ONE.

“While the benefits are far-reaching, gardening in urban settings can also create opportunities for exposure to contaminants such as heavy metals, petroleum products, and asbestos, which may be present in urban soils,” said Keeve Nachman, PhD, senior author of the study and director of the Food Production and Public Health Program with CLF.

“Our study suggests gardeners generally recognize the importance of knowing a garden site’s prior uses, but they may lack the information and expertise to determine accurately the prior use of their garden site and potential contaminants in the soil. They may also have misperceptions or gaps in knowledge about how best to minimize their risk of exposure to contaminants that may be in urban soil.

According to CLF researchers, urban soils are often close to pollution sources, such as industrial areas and heavily trafficked roads. As a result, many soil contaminants have been found at higher concentrations in urban centers.

To characterize urban community gardeners’ knowledge and perceptions of soil contamination risks and reducing exposure, researchers conducted surveys among urban community gardeners and semi-structured interviews with key informants in the gardening community in Baltimore, Maryland. Informants included individuals whose job function or organizational affiliation makes them knowledgeable about Baltimore City community gardening and soil contamination.

“People may come into contact with these contaminants if they work or play in contaminated soil, or eat food that was grown in it. In some cases, exposure to soil contaminants can increase disease risks, especially for young children,” said Brent Kim, MHS, lead author of the paper and a program officer with CLF. “Given the health, social, environmental and economic benefits associated with participating in and supporting urban green spaces, it is critical to protect the viability of urban community gardens while also ensuring a safe gardening environment.”

For more information, including resources for urban farmers and gardeners, please visit the Center for a Livable Future’s Urban Soil Safety page.

“Urban Community Gardeners’ Knowledge and Perceptions of Soil Contaminant Risks” was written by, Brent Kim, Melissa Poulsen, Jared Margulies, Katie Dix, Anne Palmer and Keeve Nachman.

The research was funded in part by Johns Hopkins Urban Health Institute and the GRACE Communications Foundation. The research was conducted in partnership with the Community Greening Resource Network.

Natalie Wood-Wright | newswise
Further information:

Further reports about: Gardeners Greening Health Soil Urban Soils contaminants exposure food production resources soils

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>