Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual soybean coloration sheds a light on gene silencing

20.06.2017

Today's soybeans are typically golden yellow, with a tiny blackish mark where they attach to the pod. In a field of millions of beans, nearly all of them will have this look. Occasionally, however, a bean will turn up half-black, with a saddle pattern similar to a black-eyed pea.

"The yellow color is derived from a natural process known as gene silencing, in which genes interact to turn off certain traits," explains Lila Vodkin, professor emerita in the Department of Crop Sciences at the University of Illinois. "Scientists make use of this process frequently to design everything from improved crops to medicines, but examples of naturally occurring gene silencing - also known as RNA interference, or RNAi - are limited. A better understanding of this process can explain how you can manipulate genes in anything from soybeans to humans."


Researchers at the University of Illinois have discovered the molecular mechanisms behind unusual saddle patterns on soybeans.

Credit: Lila Vodkin

The RNAi pathway was discovered about 20 years ago as a naturally occurring process in a tiny roundworm. The discovery and follow-up work showing its biomedical potential won scientists the Nobel Prize in 2006. In plants, RNAi was discovered in petunias. When breeders tried to transform one gene to cause brighter pinks and purples, they wound up with white flowers instead. The gene for flower color had been silenced.

"Before they were domesticated, soybeans were black or brown due to the different anthocyanin pigments in the seed coat," says Sarah Jones, a research specialist working with Vodkin on the study. "Breeders got rid of the dark pigments because they can discolor the oil or soybean meal during extraction processes."

Vodkin clarifies, "The yellow color was a naturally occurring RNAi mutation that happened spontaneously, probably at the beginning of agriculture, like 10,000 years ago. People saw the yellow beans as different. They picked them up, saved them, and cultivated them. In the germplasm collections of the wild soybean, Glycine sojae, you don't find the yellow color, only darkly pigmented seeds."

Previous work from the team showed that yellow soybeans result from a naturally occurring gene silencing process involving two genes. Essentially, one of the genes blocks production of the darker pigment's precursors. But the researchers weren't sure why black pigments sometimes reappear, as in saddle-patterned beans. Now they know.

Vodkin and her team searched for beans with unusual pigmentation in the USDA soybean germplasm collection, housed at U of I. The collection contains thousands of specimens, representing much of the genetic diversity in domesticated soybean and its wild relatives.

"We requested beans with this black saddle pattern," Jones recalls. "We wanted to know if they all get this pattern from the same gene." Some of the samples had been collected as far back as 1945.

The team used modern genomic sequencing techniques, quickly sifting through some 56,000 protein-coding genes to identify the one responsible for the pattern. The lead author, Young Cho, made the discovery as a graduate student when he noticed a defect in the Argonaute5 gene. The team looked at additional beans with the saddle and found that the Argonaute5 gene was defective in a slightly different way in each of them.

"That's how you prove you found the right gene," Vodkin says, "because of these independent mutations happening at different spots right in that same gene."

When the Argonaute5 gene is defective, the silencing process - which normally blocks the dark pigment and results in yellow beans - can no longer be carried out. The gene defect explains why the dark pigments show up in the saddle beans.

Before the team's discovery, there were very few examples of how gene interactions work to achieve silencing in naturally occurring systems. Today, bioengineers use genetic engineering technologies to silence genes to produce a desired outcome, whether it's flower color, disease resistance, improved photosynthesis, or any number of novel applications.

"The yellow color in soybeans could have been engineered, if it hadn't occurred naturally," Vodkin says, "but it would have cost millions of dollars and every yellow soybean would be a genetically modified organism. Nature engineered it first." She says this study also emphasizes the value of the soybean germplasm collection, which preserves diversity for research and breeding purposes.

###

The article, "Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max," is published in The Plant Cell. The study's lead author, Young Cho, is now a postdoctoral researcher for the Institute of Genomic Biology at the University of Illinois. The work was funded by the United Soybean Board, the USDA, and the Illinois Soybean Association.

Media Contact

Lauren Quinn
ldquinn@illinois.edu
217-300-2435

 @ACESIllinois

http://aces.illinois.edu/ 

Lauren Quinn | EurekAlert!

Further reports about: Agricultural Environmental Sciences RNAi beans genes pigments silencing soybean

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Transfer technique produces wearable gallium nitride gas sensors

10.11.2017 | Power and Electrical Engineering

NASA CubeSat to test miniaturized weather satellite technology

10.11.2017 | Information Technology

Research shows ice sheets as large as Greenland's melted fast in a warming climate

10.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>