Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual soybean coloration sheds a light on gene silencing

20.06.2017

Today's soybeans are typically golden yellow, with a tiny blackish mark where they attach to the pod. In a field of millions of beans, nearly all of them will have this look. Occasionally, however, a bean will turn up half-black, with a saddle pattern similar to a black-eyed pea.

"The yellow color is derived from a natural process known as gene silencing, in which genes interact to turn off certain traits," explains Lila Vodkin, professor emerita in the Department of Crop Sciences at the University of Illinois. "Scientists make use of this process frequently to design everything from improved crops to medicines, but examples of naturally occurring gene silencing - also known as RNA interference, or RNAi - are limited. A better understanding of this process can explain how you can manipulate genes in anything from soybeans to humans."


Researchers at the University of Illinois have discovered the molecular mechanisms behind unusual saddle patterns on soybeans.

Credit: Lila Vodkin

The RNAi pathway was discovered about 20 years ago as a naturally occurring process in a tiny roundworm. The discovery and follow-up work showing its biomedical potential won scientists the Nobel Prize in 2006. In plants, RNAi was discovered in petunias. When breeders tried to transform one gene to cause brighter pinks and purples, they wound up with white flowers instead. The gene for flower color had been silenced.

"Before they were domesticated, soybeans were black or brown due to the different anthocyanin pigments in the seed coat," says Sarah Jones, a research specialist working with Vodkin on the study. "Breeders got rid of the dark pigments because they can discolor the oil or soybean meal during extraction processes."

Vodkin clarifies, "The yellow color was a naturally occurring RNAi mutation that happened spontaneously, probably at the beginning of agriculture, like 10,000 years ago. People saw the yellow beans as different. They picked them up, saved them, and cultivated them. In the germplasm collections of the wild soybean, Glycine sojae, you don't find the yellow color, only darkly pigmented seeds."

Previous work from the team showed that yellow soybeans result from a naturally occurring gene silencing process involving two genes. Essentially, one of the genes blocks production of the darker pigment's precursors. But the researchers weren't sure why black pigments sometimes reappear, as in saddle-patterned beans. Now they know.

Vodkin and her team searched for beans with unusual pigmentation in the USDA soybean germplasm collection, housed at U of I. The collection contains thousands of specimens, representing much of the genetic diversity in domesticated soybean and its wild relatives.

"We requested beans with this black saddle pattern," Jones recalls. "We wanted to know if they all get this pattern from the same gene." Some of the samples had been collected as far back as 1945.

The team used modern genomic sequencing techniques, quickly sifting through some 56,000 protein-coding genes to identify the one responsible for the pattern. The lead author, Young Cho, made the discovery as a graduate student when he noticed a defect in the Argonaute5 gene. The team looked at additional beans with the saddle and found that the Argonaute5 gene was defective in a slightly different way in each of them.

"That's how you prove you found the right gene," Vodkin says, "because of these independent mutations happening at different spots right in that same gene."

When the Argonaute5 gene is defective, the silencing process - which normally blocks the dark pigment and results in yellow beans - can no longer be carried out. The gene defect explains why the dark pigments show up in the saddle beans.

Before the team's discovery, there were very few examples of how gene interactions work to achieve silencing in naturally occurring systems. Today, bioengineers use genetic engineering technologies to silence genes to produce a desired outcome, whether it's flower color, disease resistance, improved photosynthesis, or any number of novel applications.

"The yellow color in soybeans could have been engineered, if it hadn't occurred naturally," Vodkin says, "but it would have cost millions of dollars and every yellow soybean would be a genetically modified organism. Nature engineered it first." She says this study also emphasizes the value of the soybean germplasm collection, which preserves diversity for research and breeding purposes.

###

The article, "Mutations in Argonaute5 illuminate epistatic interactions of the K1 and I loci leading to saddle seed color patterns in Glycine max," is published in The Plant Cell. The study's lead author, Young Cho, is now a postdoctoral researcher for the Institute of Genomic Biology at the University of Illinois. The work was funded by the United Soybean Board, the USDA, and the Illinois Soybean Association.

Media Contact

Lauren Quinn
ldquinn@illinois.edu
217-300-2435

 @ACESIllinois

http://aces.illinois.edu/ 

Lauren Quinn | EurekAlert!

Further reports about: Agricultural Environmental Sciences RNAi beans genes pigments silencing soybean

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>