Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Untapped crop data from Africa predicts corn peril if temperatures rise

A hidden trove of historical crop yield data from Africa shows that corn – long believed to tolerate hot temperatures – is a likely victim of global warming.

Stanford agricultural scientist David Lobell and researchers at the International Maize and Wheat Improvement Center (CIMMYT) report in the inaugural issue of Nature Climate Change next week that a clear negative effect of warming on maize – or corn – production was evident in experimental crop trial data conducted in Africa by the organization and its partners from 1999 to 2007.

Led by Lobell, the researchers combined data from 20,000 trials in sub-Saharan Africa with weather data recorded at stations scattered across the region. They found that a temperature rise of a single degree Celsius would cause yield losses for 65 percent of the present maize-growing region in Africa – provided the crops received the optimal amount of rainfall. Under drought conditions, the entire maize-growing region would suffer yield losses, with more than 75 percent of areas predicted to decline by at least 20 percent for 1 degree Celsius of warming.

"The pronounced effect of heat on maize was surprising because we assumed maize to be among the more heat-tolerant crops," said Marianne Banziger, co-author of the study and deputy director general for research at CIMMYT.

"Essentially, the longer a maize crop is exposed to temperatures above 30 C, or 86 F, the more the yield declines," she said. "The effect is even larger if drought and heat come together, which is expected to happen more frequently with climate change in Africa, Asia or Central America, and will pose an added challenge to meeting the increasing demand for staple crops on our planet."

Similar sources of information elsewhere in the developing world could improve crop forecasting for other vast regions where data has been lacking, according to Lobell, who is lead author of the paper describing the study.

"Projections of climate change impacts on food production have been hampered by not knowing exactly how crops fair when it gets hot," Lobell said. "This study helps to clear that issue up, at least for one important crop."

While the crop trials have been run for many years throughout Africa, to identify promising varieties for release to farmers, nobody had previously examined the weather at the trial sites and studied the effect of weather on the yields, said Lobell, who is an assistant professor of environmental Earth system science.

"These trials were organized for completely different purposes than studying the effect of climate change on the crops," he said. "They had a much shorter term goal, which was to get the overall best-performing strains into the hands of farmers growing maize under a broad range of conditions."

The data recorded at the yield testing sites did not include weather information. Instead, the researchers used data gathered from weather stations all over sub-Saharan Africa. Although the stations were operated by different organizations, all data collection was organized by the World Meteorological Organization, so the methods used were consistent.

Lobell then took the available weather data and interpolated between recording stations to infer what the weather would have been like at the test sites. By merging the weather and crop data, the researchers could examine climate impacts.

"It was like sending two friends on a blind date – we weren't sure how it would go, but they really hit it off," Lobell said.

Previously, most research on climate change impacts on agriculture has had to rely on crop data from studies in the temperate regions of North America and Europe, which has been a problem.

"When you take a model that has been developed with data from one kind of environment, such as a temperate climate, and apply it to the rest of the world, there are lots of things that can go wrong" Lobell said, noting that much of the developing world lies in tropical or subtropical climates.

But he said many of the larger countries in the developing world, such as India, China and Brazil, which encompass a wide range of climates, are running yield testing programs that could be a source of comparable data. Private agribusiness companies are also increasingly doing crop testing in the tropics.

"We're hoping that with this clear demonstration of the value of this kind of data for assessing climate impacts on crops that others will either share or take a closer look themselves at their data for various crops," Lobell said.

"I think we may just be scratching the surface of what can be achieved by combining existing knowledge and data from the climate and agriculture communities. Hopefully this will help catalyze some more effort in this area."

Lobell is a Center Fellow at the Program on Food Security and the Environment, a joint program of Stanford's Woods Institute for the Environment and Freeman Spogli Institute for International Studies.

Louis Bergeron | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>