Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking Sorghum’s Gene Bank

04.01.2013
Climate change poses a major challenge to humanity’s ability to feed its growing population.

But a new study of sorghum, led by Stephen Kresovich and Geoff Morris of the University of South Carolina, promises to make this crop an invaluable asset in facing that challenge. Just published in the Proceedings of the National Academy of Sciences (PNAS), the paper puts genetic tools into the hands of scientists and plant breeders to help accelerate their ability to adapt sorghum to new conditions.

A hardy cereal crop that was first domesticated in the Horn of Africa some 10,000 years ago, sorghum is now cultivated worldwide, from Texas to China. Sorghum is a particularly drought-tolerant grain and an essential part of the diet for 500 million people, chiefly in sub-Saharan Africa and India. In the U.S., where it is primarily grown for livestock feed, sorghum’s climate resilience was highlighted during the devastating summer drought of 2012.

A large international effort decoded the genome of the species cultivated for food, Sorghum bicolor, which was published in the journal Nature in 2009. That genome represents the genetic accounting of a single individual of sorghum. But as individual humans have genetic differences that underlie physical differences such as eye color, so do individual plants of sorghum. The focus of the current effort was to establish the connections between gene differences and physical differences – a detailed understanding of those connections will constitute a tremendous tool for plant breeders.

The team behind the current PNAS publication – which also included researchers at Cornell University, the International Crops Research Institute for the Semi-Arid Tropics in India and Niger, the University of Illinois and the U.S. Department of Agriculture – used genotyping-by-sequencing (GBS) to determine the individual genetic makeup of 971 sorghum varieties taken from world-wide seed collections. The scientists identified more than a quarter million single-nucleotide polymorphisms (SNPs); that is, single letters in the genetic code where individual variants of sorghum can differ.

The results were possible thanks to a tremendous genetic resource that was built over many years, and largely before genotyping was even technically possible. For almost a century, sorghum seeds from a variety of international locations have been stored in seed banks, with dates and geographic origins often noted with each sample.

“We’re taking advantage of the incredible diversity found in the gene bank,” said Morris, a research assistant professor at USC and lead author on the paper.

One subject of particular scrutiny in the paper was the genetic control of the panicle, the structure on the top of the plant that holds the grains. This structure is an important consideration for successful breeding, particularly when climate is a consideration. Closely packed grains, for example, are preferred for maximum crop yield in dry areas, but in places with abundant rainfall, more spacing is desirable to allow grains dry out more readily and reduce crop losses from moisture-caused disease.

The researchers identified genes that likely contribute to this physical feature, and they also mapped them geographically according to the source of the original seed. The result was insight into how different variants of the genes spread according to regional climates – which varied widely in the study, from the edge of the Sahara to the rainy highlands of east Africa.

The results will “provide resources for everyone around the world who breeds sorghum,” Morris said. “The goal is to do it faster than the way it’s been done traditionally, which takes years of growing and crossing and testing.”

That’s particularly important because the semi-arid regions where sorghum is a staple food are predicted to be most adversely affected by climate change. Sorghum varieties that currently thrive there will have to be bred for new conditions, a time-consuming process. “The challenges facing agriculture are getting more severe, so the tools that we have for crop improvement have to keep pace,” Morris said.

A further step forward will involve genomic selection, another collaborative effort planned for the coming year that will again involve Kresovich, the SmartState Endowed Chair of Genomics at USC and senior author on the PNAS paper. With that method, in which computers are used to select the most promising candidates to test in the field, “you might be able to take years off the breeding cycle,” Morris said. “Instead of having to grow thousands of varieties, you test thousands of varieties ‘in silico’ and pick a few hundred of the best for growing the next generation.”

The work was supported by the NSF under the Basic Research to Enable Agricultural Development (BREAD) project (ID:IOS-0965342) and the USDA-NIFA Plant Feedstock Genomics for Bioenergy Program (#2011-03502).

Steven Powell | Newswise
Further information:
http://www.sc.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

New Test for Rare Immunodeficiency

23.08.2017 | Life Sciences

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>