Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique lab seeks drought-tolerant traits in cotton, other plants

27.06.2011
As billion-dollar agricultural losses continue to mount in the withering Texas heat, Texas AgriLife Research scientists in Corpus Christi are taking a closer look at why some cotton varieties do better than others in drought conditions.

"We want to better understand those traits that control water use in plants so we can transfer that information to breeders and geneticists to more quickly develop drought-tolerant cultivars so badly needed here," said Dr. Carlos Fernandez, a plant physiologist at the Texas AgriLife Research and Extension Center in Corpus Christi. Dr. Carlos Fernandez checks leaves of a cotton plant being evaluated for its drought tolerance.

Dr. Carlos Fernandez checks leaves of a cotton plant being evaluated for its drought tolerance.

To coax that information from nature, Fernandez designed and constructed a unique drought-tolerance greenhouse laboratory last year that is fully automated and computerized. The system closely tracks the water use and growth of various cotton varieties from planting to harvest, he said.

"All plants are treated equally," Fernandez said. "They all have the exact same amount of high-absorbent soil to remove that as a variation factor. Each also gets exactly the same amount of nutrient solution. We irrigate them daily up to a point when we stop or reduce irrigation to see how the plant reacts to the water deficiency."

Fernandez then precisely measures each plant's leaf area, stomatal density, water-conducting vessels, rooting systems and other characteristics. "We do this not only to look at the effects on water use and growth, but also the production of fiber and fiber quality."

The information and conclusions he develops are then shared with breeders and geneticists who may be able to provide growers with drought-tolerant cotton varieties.

"The idea is to tell them, 'Look at these plant traits that seem to confer a particular water economy in this cultivar. Look at this trait because in this cultivar it gives us this result.'"

Research using his greenhouse laboratory, which measures some 50 feet by 60 feet, is not limited to cotton, Fernandez said.

"This system can be used for other crops, but we're starting with cotton for obvious reasons, since it is such a large part of our agricultural production, and because water limitation is the most important yield-limiting factor here," he said.

The cooperative work of physiologists, geneticists and breeders on a single issue is something that hasn't been done in the past, Fernandez said.

"We are trying to generate the synergy of different disciplines working together to more quickly develop cultivars that will better tolerate the heat and water stresses that seem to be so prevalent lately."

Fernandez's AgriLife Research colleagues include Drs. Jane Dever and Steve Hague, cotton breeders in Lubbock and College Station, respectively.

Rod Santa Ana | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>