Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH researchers conduct first comprehensive study of NH oyster farming

07.03.2016

University of New Hampshire scientists have conducted the first study of oyster farming-nitrogen dynamics in New Hampshire, providing the first solid research on the state's oyster farming industry and the role oyster farms play with nitrogen removal. The research, which was funded in part by the NH Agricultural Experiment Station, contributes to a growing body of research on how oysters affect the nitrogen content of estuaries such as Great Bay.

The research was conducted by Ray Grizzle, research professor of zoology at the UNH School of Marine Science and Ocean Engineering; Krystin Ward, research assistant at the UNH Jackson Estuarine Laboratory; Chris Peter, research associate at the UNH Jackson Estuarine Laboratory; and Mark Cantwell, David Katz, and Julia Sullivan with the U.S. Environmental Protection Agency, Office of Research and Development.


Ray Grizzle pulls a cage holding first and third-year oysters out of Great Bay.

Credit: Krystin Ward/UNH

"Every oyster that is harvested represents some amount of nitrogen leaving the system. We're beginning to quantify nitrogen dynamics and how the oyster farms on Great Bay affect it. Secondly, we're putting some numbers on the oyster farming industry itself," Grizzle.

Stretching 15 miles inland, Great Bay is a drowned river estuary with 144 miles of shore. According to the NH Water Resources Research Center at UNH, Great Bay has experienced a deterioration of water quality and aquatic life as a result of high nitrogen levels. A 2009 study indicated that nitrogen had increased 42 percent over the previous five years. Researchers also report that eelgrass declined by 64 percent between 1990 and 2008, and adult oyster populations have decreased from 125,000 in 1997 to 10,000 in 2009.

In this study, UNH researchers studied oysters at six sites in Great Bay over a three-year period beginning in 2010. The scientists measured the amount of nitrogen in different components of the oyster body, in different sizes of oysters, and at different farm sites.

"Oysters feed on organisms that contain nitrogen, mostly phytoplankton, single-cell plants. When they feed upon these plants, they digest some of them and some go out as waste. But a significant percentage of them are incorporated into the oyster's body -- the shell and soft tissue," Grizzle said. "We wanted to see how much nitrogen is in farm-raised oysters, what factors cause nitrogen content to vary, and how oyster farming compares with other ways to remove nitrogen from the estuarine system."

Researchers found that the nitrogen in farmed oysters varied depending on size of oyster, farm site, age of oyster, seasonal variability, water quality, and time of harvest. They also found that the farmed oysters with the most nitrogen were those at sites that had the most nitrogen in the water. Overall, the average nitrogen content in the shells and soft tissue was comparable to that found in previous studies ranging from Cape Cod to the Gulf of Mexico.

Those who manage the Great Bay Estuary now are using this research to determine the amount of nitrogen that could be removed by oyster farming. "We have about 50 acres of oyster farms now. We are now modeling different levels of oyster industry size and how it would affect nitrogen removal in Great Bay," Grizzle said.

"It's never going to be a huge amount of nitrogen. I suspect it will be below 5 percent of the nitrogen that goes into the estuary, but 5 percent is 5 percent," he said.

According to Grizzle, the destruction of the natural oyster reefs in Great Bay likely has contributed substantially to the increase in nitrogen. Great Bay used to have many more natural oyster reefs, but in the 1990s, two oyster diseases hit the estuary. As a result, Great Bay has about 10 percent of the natural oyster reefs it had 30 years ago, and they are not in good shape.

"If we were at ten times the amount of natural reefs, the oysters would be filtering a substantial amount of water through their bodies. Some of the estimates have been upwards of 90 percent. That's the far end, but probably half would not be an exaggeration. So when they are filtering that much water, they are removing all of the particles and would have affected water quality," Grizzle said.

"However, we're getting to the point now that there may be as many oysters on farms as there are on natural reefs. We need to begin to look more carefully at how farms compare to the reefs in terms of the habitat they provide, the amount of water they filter, and the spawn they put out. We need to look at the farms in a more ecological manner," said Grizzle, who estimates Great Bay could sustain 100 acres of oyster farms.

Although Grizzle doesn't see oyster farms as being a substantial solution to reducing nitrogen in the entire Great Bay, he believes it could have a measurable impact on Little Bay. Using floating rafts may be a viable option for future oyster farming on Great Bay.

But even if oyster farming does not become a major solution to reducing nitrogen in Great Bay, Grizzle emphasizes that oyster farming still provides valuable ecosystem services. "When the discussion focuses on one factor like nitrogen removal, people think that if it doesn't work, we shouldn't do it. Oysters provide habitat. They filter the water. They clear the water. Eel grass could expand. All of these ecosystem services come along with the farms," he said.

Going forward, Grizzle plans to research ways to increase production on oyster farms such as how to grow oysters more quickly.

Jay Baker, owner of Fat Dog Shellfish Co., said Grizzle's latest research adds to a growing body of work that demonstrates the value of farmed oysters in improving coastal water quality and mitigating human impacts to sensitive estuarine waters.

"While much of this work has focused on nutrient removal efficiencies of existing oyster populations and the results of enhancing wild stocks, Dr. Grizzle's work highlights the important role our industry can and does play in making coastal waters cleaner, and creating habitat for other valuable species," Baker said.

"Oyster aquaculture is one of few truly sustainable industries, and Ray Grizzle's great work continues to move this from abstract concept to a quantified and well documented fact. Both Dr. Grizzle and UNH have played a key role in not only improving our understanding of the value of restored and farmed oyster populations in Great Bay and the Northeast, but also in promoting shellfish aquaculture and sharing valuable knowledge and experience with new growers. The result is what has been called the 'New Hampshire Oyster Renaissance,' and we thank Dr. Grizzle and UNH for their great work," he said.

###

The researchers present their findings in the article "Growth, morphometrics, and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA" in the journal Aquaculture Research.

This material is based upon work supported by the NH Agricultural Experiment Station, through joint funding of the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 1003387, and the state of New Hampshire. The research also was funded by the Ecological Services Research Program of the U.S. Environmental Protection Agency and the National Oceanic Atmospheric Administration.

Founded in 1887, the NH Agricultural Experiment Station at the UNH College of Life Sciences and Agriculture is UNH's original research center and an elemental component of New Hampshire's land-grant university heritage and mission. We steward federal and state funding, including support from the USDA National Institute of Food and Agriculture, to provide unbiased and objective research concerning diverse aspects of sustainable agriculture and foods, aquaculture, forest management, and related wildlife, natural resources and rural community topics. We maintain the Woodman and Kingman agronomy and horticultural farms, the Macfarlane Greenhouses, the Fairchild Dairy Teaching and Research Center, and the Organic Dairy Research Farm. Additional properties also provide forage, forests and woodlands in direct support to research, teaching, and outreach.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 13,000 undergraduate and 2,500 graduate students.

Ray Grizzle | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>