Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding plants' immune systems could lead to better tomatoes, roses, rice

12.03.2015

Spring is just around the corner and for millions of Americans, that means planting a garden with plenty of fruits and vegetables, including tomatoes.

However, some of the plants will be infected by bacteria, leading to stunted growth and less nutritional value. Now, a University of Missouri research team has uncovered new regulations of defense pathways for plants.


Plants that are infected with speck disease often have wilted leaves and damaged fruit.

Credit: University of Missouri

This discovery could lead to helping those home-grown tomatoes fight off certain bacteria better and has implications for pear trees, roses, soybeans and rice.

"Each year, millions of dollars are lost from damage to crops and ornamental plants caused by pathogens, which include a bacteria known as Pseudomonas Syringae," said Antje Heese, assistant professor of biochemistry at MU. "This bacteria directly affects tomatoes and causes speck disease that permanently damages the fruit and leaves. In our study, we used Arabidopsis thaliana, a plant that has the same immune response as tomatoes but grows at a faster rate, to study the immune responses of plants."

Previously, researchers thought that a plant defended itself against bacteria by activating a specific, several-step process. However, Heese's team found that if the plant is exposed to bacteria, it actually activates its immune system using three separate mechanisms.

Heese and her research team, including MU graduate student John M. Smith, confirmed that each mechanism responding to the infection is doing so independently of the other two mechanisms, and that each of these mechanisms must have the right amount of specific proteins, called immune receptors, in the right place to respond appropriately.

Having the right combination provides the plant with an effective and efficient immune response. This discovery could allow future scientists to create new strategies to help plants fight disease and lead to better crops.

"Like any living organism, plants have limited resources and they have to use those resources effectively," Heese said. "If the plant makes too much of the proteins responsible for these mechanisms, they will suffer in other areas, such as creating quality fruit. This same discovery can be applied to many crops, including rice and soybeans, and ornamental plants, including roses, pear and apple trees. The information discovered in this study gives scientists something new to study in plants, with the eventual goal of better crops and ornamental plants."

###

The study, "Loss of Arabidopsis thaliana Dynamin-Related Protein 2B Reveals Separation of Innate Immune Signaling Pathways," was published PLOS Pathogens. Sebastian Bednarek, professor of biochemistry at the University of Wisconsin-Madison and MU assistant professors Abe Koo and Peter Cornish contributed to this research. The study was supported by grants from the National Science Foundation (No. 1147032 and No. 0446157) and the University of Missouri.

The MU Department of Biochemistry is housed in the College of Agriculture, Food and Natural Resources and the School of Medicine.

Media Contact

Christian Basi
BasiC@missouri.edu
573-882-4430

 @mizzounews

http://www.missouri.edu 

Christian Basi | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>