Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Phosphorus in Soils Is Vital to Proper Management

05.02.2009
Scientist identify the chemical forms of phosphorus with nuclear magnetic resonance spectroscopy.

Phosphorus is one of the key nutrients that can cause algal blooms and related water quality problems in lakes, rivers, and estuaries worldwide. Phosphorus entering waters originates from a variety of sources.

Agricultural land receiving long term applications of organic by-products such as animal manure is one of the major contributors. Such soils often become enriched with P, leading to elevated P loss through erosion and runoff. Information on the chemical characteristics of P in these soils is essential to improving our understanding of how P behaves in soils and how it is transported in runoff to devise better management practices that protect water quality.

A group of scientists in the USA and Australia have identified the chemical forms of P, using 31P nuclear magnetic resonance (NMR) spectroscopy, in soils receiving organic by-products for at least eight years (treated) as compared with soils not receiving P application (untreated). Results from the study were published in the January-February issue of the Soil Science Society of America Journal.

Regardless of the type of organic materials applied (dairy, swine, poultry, or spent mushroom compost), orthophosphate (inorganic P) was the single dominant P form, more so in treated soils (79-93% of total P) than in untreated soils (33-71%). Orthophosphate was also the only P form that differed dramatically between paired soils, three to five times greater in treated than untreated soils. Other P forms included condensed inorganic P and various organically bound P groups; however, their amounts were relatively small and differences between each paired soils were insignificant.

Surprisingly, the study revealed no evidence of phytate-P accumulation in any of the soils receiving organic wastes. Phytate is an organic storage form of P that is known to be present in animal manures, in particularly large proportion (up to 80% of total P) in poultry manure. Phytate-P is generally considered to be recalcitrant in the agroecosystem because of its chemical structure. However, the lack of phytate-P accumulation in several soils receiving poultry manure in this study indicates that manure-derived phytate-P may not be biologically and environmentally benign.

Zhengxia Dou, the lead author, stated “in terms of potential P loss in the long run, organic materials containing large amounts of phytate-P such as poultry manure may not differ from other material containing mainly inorganic P”. Andrew Sharpley, a collaborating scientist, further explained “when the soils’ P sorption capacity was nearly saturated after years of manure application, phytate or other organic P forms could be exposed to breakdown and potential loss”. Therefore, it is important to strive towards balancing P inputs with outputs and to prevent P from building up in soils to which manure is applied.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>