Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding natural crop defenses

02.03.2009
Ever since insects developed a taste for vegetation, plants have faced the same dilemma: use limited resources to out-compete their neighbors for light to grow, or, invest directly in defense against hungry insects.

Now, an international team of scientists at the Salk Institute for Biological Studies and the Institute of Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA) has discovered how plants weigh the tradeoffs and redirect their energies accordingly.

The same light sensor that detects other plants crowding in and gives the signal to switch on the synthesis of the plant growth hormone auxin reduces the plant's responsiveness to the hormone jasmonic acid, which orchestrates the synthesis of a whole array of defensive chemicals, the researchers report in an article published in the current early online edition of the Proceedings of the National Academy of Sciences.

"Understanding how plants resolve the dilemma of resource allocation on a mechanistic level opens the possibility to increase the natural defenses of crops, especially in the high density plantings typical of modern agriculture, which depend on regular applications of insecticides," explains senior author Carlos L. Ballaré, Ph.D., a senior scientist with CONICET (the National Research Council of Argentina) and associate professor at the University of Buenos Aires.

In an earlier study, Ballaré discovered that plants dial down their investment in defense when they perceive an increased risk of competition for light. But just how changes in light quality caused plants to drop their guards were still poorly understood. To connect the two, he turned to Howard Hughes Medical Institute investigator Joanne Chory, Ph.D., in the Plant Biology Laboratory at the Salk Institute and former lab member, Yi Tao, Ph.D., who had dissected the molecular pathway that plants use to adjust their growth and flowering time to shade.

Plants sense the presence of other plants in their neighborhood by the relative increase in incoming far-red light resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. "When the major photoreceptor for shade avoidance detects neighbors, plants start producing the growth hormone auxin and transport it to their stems, where it helps plants grow taller," explains Chory.

But plants also react to chemical cues in the oral secretions of herbivores and mechanical damage caused by caterpillars and their ilk nibbling on foliage. They increase the production of defense-related hormones, particularly jasmonic acid, which ramps up the concentration of chemicals that make plants unpalatable or at least less nutritious for herbivores.

"Such responses incur what is known as opportunity costs," says Chory. "Resource allocation to competition can limit investment in defense, increasing vulnerability to herbivores, while allocation to defense can reduce competitive ability against neighboring plants."

And that's exactly what first author Javier E. Moreno, a graduate student in Ballaré´s lab, found. Fall armyworms—caterpillars that prefer to chomp on corn, sorghum and other members of the grass family but won't say no to beans, potatoes, peanuts, cotton and other crops—grew twice as fast on Arabidopsis thaliana seedling grown under crowded conditions or exposed to far-red radiation, the light signal plants use to detect the proximity of neighbors. Like many commercially grown crops, Arabidopsis — the lab rat of plant biologists — doesn't tolerate shade well.

But it was more than a matter of limited resources. Mutated Arabidopsis seedlings that no longer responded to far-red radiation but had normal levels of the far-red photoreceptor, still let their defenses down. At closer inspection, the researchers found that far-red radiation decreased the plants' sensitivity to jasmonates. By ignoring jasmonate signals, the plants save resources because they no long invest in defense and, at the same time, avoid the growth-inhibitory effects of jasmonates.

"Without sufficient light to keep photosynthesis going, plants won't have enough energy to invest in sophisticated defense strategies," says Ballaré. "Coupling shade avoidance syndrome with the regulation of resource allocation to defense could provide a major selective advantage for plants growing in the wild, but might increase the vulnerability of densely planted crops to insects."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>