Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding natural crop defenses

02.03.2009
Ever since insects developed a taste for vegetation, plants have faced the same dilemma: use limited resources to out-compete their neighbors for light to grow, or, invest directly in defense against hungry insects.

Now, an international team of scientists at the Salk Institute for Biological Studies and the Institute of Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA) has discovered how plants weigh the tradeoffs and redirect their energies accordingly.

The same light sensor that detects other plants crowding in and gives the signal to switch on the synthesis of the plant growth hormone auxin reduces the plant's responsiveness to the hormone jasmonic acid, which orchestrates the synthesis of a whole array of defensive chemicals, the researchers report in an article published in the current early online edition of the Proceedings of the National Academy of Sciences.

"Understanding how plants resolve the dilemma of resource allocation on a mechanistic level opens the possibility to increase the natural defenses of crops, especially in the high density plantings typical of modern agriculture, which depend on regular applications of insecticides," explains senior author Carlos L. Ballaré, Ph.D., a senior scientist with CONICET (the National Research Council of Argentina) and associate professor at the University of Buenos Aires.

In an earlier study, Ballaré discovered that plants dial down their investment in defense when they perceive an increased risk of competition for light. But just how changes in light quality caused plants to drop their guards were still poorly understood. To connect the two, he turned to Howard Hughes Medical Institute investigator Joanne Chory, Ph.D., in the Plant Biology Laboratory at the Salk Institute and former lab member, Yi Tao, Ph.D., who had dissected the molecular pathway that plants use to adjust their growth and flowering time to shade.

Plants sense the presence of other plants in their neighborhood by the relative increase in incoming far-red light resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. "When the major photoreceptor for shade avoidance detects neighbors, plants start producing the growth hormone auxin and transport it to their stems, where it helps plants grow taller," explains Chory.

But plants also react to chemical cues in the oral secretions of herbivores and mechanical damage caused by caterpillars and their ilk nibbling on foliage. They increase the production of defense-related hormones, particularly jasmonic acid, which ramps up the concentration of chemicals that make plants unpalatable or at least less nutritious for herbivores.

"Such responses incur what is known as opportunity costs," says Chory. "Resource allocation to competition can limit investment in defense, increasing vulnerability to herbivores, while allocation to defense can reduce competitive ability against neighboring plants."

And that's exactly what first author Javier E. Moreno, a graduate student in Ballaré´s lab, found. Fall armyworms—caterpillars that prefer to chomp on corn, sorghum and other members of the grass family but won't say no to beans, potatoes, peanuts, cotton and other crops—grew twice as fast on Arabidopsis thaliana seedling grown under crowded conditions or exposed to far-red radiation, the light signal plants use to detect the proximity of neighbors. Like many commercially grown crops, Arabidopsis — the lab rat of plant biologists — doesn't tolerate shade well.

But it was more than a matter of limited resources. Mutated Arabidopsis seedlings that no longer responded to far-red radiation but had normal levels of the far-red photoreceptor, still let their defenses down. At closer inspection, the researchers found that far-red radiation decreased the plants' sensitivity to jasmonates. By ignoring jasmonate signals, the plants save resources because they no long invest in defense and, at the same time, avoid the growth-inhibitory effects of jasmonates.

"Without sufficient light to keep photosynthesis going, plants won't have enough energy to invest in sophisticated defense strategies," says Ballaré. "Coupling shade avoidance syndrome with the regulation of resource allocation to defense could provide a major selective advantage for plants growing in the wild, but might increase the vulnerability of densely planted crops to insects."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>