Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Microbes Blowing in the Wind

07.02.2013
With help from a wind tunnel and the latest DNA technology, U.S. Department of Agriculture (USDA) scientists are shedding light on the travel patterns of microbes in soils carried off by strong winds. The work has implications for soil health and could lead to management practices that minimize the damage to soils caused by wind erosion.

Wind erosion is an emerging issue in soil conservation efforts. Agricultural Research Service (ARS) scientists have been studying wind-eroded soils since the 1930s, but few studies have focused on the effects of wind on the bacteria, fungi, and protozoa in the soil. ARS is USDA's chief intramural scientific research agency.

Researchers see an increasing need to focus on pathogens and agriculturally important bacteria carried in dust. ARS soil scientist Veronica Acosta-Martinez, with the agency's Wind Erosion and Water Conservation Unit in Lubbock, Texas, focused on bacterial populations that could be classified by DNA sequencing. She worked with Terrence Gardner, a visiting scientist from Alabama A&M University.

Researchers collected airborne dust and samples of a type of organic soil susceptible to wind erosion from fields where potatoes, beets and onions had grown a few years earlier and exposed them to windy conditions using a portable wind tunnel. They characterized the bacteria they found in both the "source soils" and the wind-eroded sediments, focusing on types of bacteria associated with coarse particles and on the types associated with fine dust particles.

They classified the bacteria found in each type of soil and wind-eroded sediment using pyrosequencing, a process that allowed them to identify up to 100 times more DNA in each sample than they would have detected with traditional methods. The study results, published online in the Journal of Environmental Quality, showed that certain types of bacteria, known as Bacteroidetes, were more predominant in the fine dust. Other types, known as Proteobacteria, were more predominant in coarse sediments.

Studies have shown that Bacteroidetes resist desiccation and thus can survive in extreme conditions when carried long distances. The fact that Proteobacteria were associated with coarse eroded sediments, which travel shorter distances, may explain how soils can retain important qualities despite damaging winds. Proteobacteria play an important role in carbon and nitrogen cycling, and their fate in dust storms will be the focus of future research, according to Acosta-Martinez.

Read more about this research in the February 2013 issue of Agricultural Research magazine: http://www.ars.usda.gov/is/AR/archive/feb13/soil0213.htm

Dennis O’Brien | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research Bacteroidetes DNA Proteobacteria fine dust microbes

More articles from Agricultural and Forestry Science:

nachricht Tropical deforestation releases large amounts of soil carbon
28.07.2015 | Georg-August-Universität Göttingen

nachricht Drivers of temporal changes in temperate forest plant diversity
27.07.2015 | Friedrich-Schiller-Universität Jena

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>