Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Dormancy in Rice Leads to Discovery

14.11.2008
A South Dakota State University scientist has demonstrated for the first time that a weed called red rice gets its seed color and its ability to remain dormant from the same gene.

That discovery has important implications for both rice-producing and wheat-producing regions. If red color and dormancy in wheat are controlled by a single gene, it could mean that it will be more difficult to handle pre-harvest sprouting in white wheat varieties, for example.

Red rice, or weedy rice, is a major weed in rice-growing regions. Extensive work by assistant professor Xing-You Gu in SDSU’s Department of Plant Science suggests that a single gene helps regulate more than one trait in red rice, including dormancy and seed coat color.

Gu said weedy rice causes problems for rice growers worldwide, in part because it germinates at a later time than domestic varieties of rice. That delayed germination is a reflection of the plant’s dormancy trait — the major focus of Gu’s research.

Like the pre-harvested seed-head shattering mechanism assures that the seed bank in the soil will be replenished before grain is harvested off the field, the dormancy trait is important for survival because it assures that seed will remain viable in the soil until conditions are right for germination.

“The question is, why is red rice so difficult to control in rice-growing areas?,” Gu said.

“Based on my recent research, red rice is not only a red pigmentation issue. This gene is a transcription factor participating in the regulation of many pathways that could enhance weedy rice’s adaptability.”

“Transcription factors” are proteins that are necessary to read and interpret genetic instructions in DNA. Gu said they act, for example, as part of the plant’s machinery to turn transcription of certain genes on or off to allow changes in the plant’s development.

Gu said the association of dormancy and red seed coat, or pericarp, color isn’t in itself surprising. Wheat breeders are aware of the connection, for example. But until now, scientists have not been sure whether a single gene or more than one is involved.

“In common wheat there is a report of association between seed dormancy and red seed coat color,” Gu said, adding that red-colored wheat varieties are more dormant than white varieties. That means red-colored varieties are also more resistant to pre-harvest sprouting — a major problem for growers of wheat varieties worldwide.

“The question we haven’t answered yet is if the dormancy genes and the red color genes are the same gene or two closely linked genes,” Gu said.

Gu said that if the genes are only closely linked in wheat, breeders could use genetic tools to dissect the genes and use the dormancy gene to improve white wheat varieties’ resistance to pre-harvest sprouting. If they’re the same gene, however, then there is absolutely no way to use the dormancy gene without also getting the red seed coat color.

“We haven’t done similar research in wheat, but based on our research in weedy rice, the gene that controls red color also controls seed dormancy,” Gu said. “Our research will have a possible impact on seed science and seed development.”

Gu said one focus of his work in the future will be to look for homologous genes — those that confer similar characteristics due to shared ancestry — in crops such as wheat and barley.

Gu said that if wheat is like red rice, then wheat breeders would have to search for additional dormancy genes independent of genes that also regulate red seed coat color in order to improve the resistance to pre-harvest sprouting of white-colored varieties.

A part of Gu’s work involves map-based cloning on major quantitative trait loci, or QTLs. A quantitative trait locus is a region of DNA, though not necessarily a gene, that is closely associated with an observable characteristic or trait.

Gu and his graduate students also do fine-mapping of QTLs by dissecting and identifying which subsection is responsible for seed dormancy. That research will help scientists and plant breeders everywhere understand which genes are involved.

“Seed dormancy is one of the most important biological mechanisms,” Gu said.

“The trait is important for seed-bearing plants, but of the detailed biological mechanism, we know very little.”

The National Science Foundation and the USDA National Research Initiative supported Gu’s seed dormancy research.

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>