Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Dormancy in Rice Leads to Discovery

14.11.2008
A South Dakota State University scientist has demonstrated for the first time that a weed called red rice gets its seed color and its ability to remain dormant from the same gene.

That discovery has important implications for both rice-producing and wheat-producing regions. If red color and dormancy in wheat are controlled by a single gene, it could mean that it will be more difficult to handle pre-harvest sprouting in white wheat varieties, for example.

Red rice, or weedy rice, is a major weed in rice-growing regions. Extensive work by assistant professor Xing-You Gu in SDSU’s Department of Plant Science suggests that a single gene helps regulate more than one trait in red rice, including dormancy and seed coat color.

Gu said weedy rice causes problems for rice growers worldwide, in part because it germinates at a later time than domestic varieties of rice. That delayed germination is a reflection of the plant’s dormancy trait — the major focus of Gu’s research.

Like the pre-harvested seed-head shattering mechanism assures that the seed bank in the soil will be replenished before grain is harvested off the field, the dormancy trait is important for survival because it assures that seed will remain viable in the soil until conditions are right for germination.

“The question is, why is red rice so difficult to control in rice-growing areas?,” Gu said.

“Based on my recent research, red rice is not only a red pigmentation issue. This gene is a transcription factor participating in the regulation of many pathways that could enhance weedy rice’s adaptability.”

“Transcription factors” are proteins that are necessary to read and interpret genetic instructions in DNA. Gu said they act, for example, as part of the plant’s machinery to turn transcription of certain genes on or off to allow changes in the plant’s development.

Gu said the association of dormancy and red seed coat, or pericarp, color isn’t in itself surprising. Wheat breeders are aware of the connection, for example. But until now, scientists have not been sure whether a single gene or more than one is involved.

“In common wheat there is a report of association between seed dormancy and red seed coat color,” Gu said, adding that red-colored wheat varieties are more dormant than white varieties. That means red-colored varieties are also more resistant to pre-harvest sprouting — a major problem for growers of wheat varieties worldwide.

“The question we haven’t answered yet is if the dormancy genes and the red color genes are the same gene or two closely linked genes,” Gu said.

Gu said that if the genes are only closely linked in wheat, breeders could use genetic tools to dissect the genes and use the dormancy gene to improve white wheat varieties’ resistance to pre-harvest sprouting. If they’re the same gene, however, then there is absolutely no way to use the dormancy gene without also getting the red seed coat color.

“We haven’t done similar research in wheat, but based on our research in weedy rice, the gene that controls red color also controls seed dormancy,” Gu said. “Our research will have a possible impact on seed science and seed development.”

Gu said one focus of his work in the future will be to look for homologous genes — those that confer similar characteristics due to shared ancestry — in crops such as wheat and barley.

Gu said that if wheat is like red rice, then wheat breeders would have to search for additional dormancy genes independent of genes that also regulate red seed coat color in order to improve the resistance to pre-harvest sprouting of white-colored varieties.

A part of Gu’s work involves map-based cloning on major quantitative trait loci, or QTLs. A quantitative trait locus is a region of DNA, though not necessarily a gene, that is closely associated with an observable characteristic or trait.

Gu and his graduate students also do fine-mapping of QTLs by dissecting and identifying which subsection is responsible for seed dormancy. That research will help scientists and plant breeders everywhere understand which genes are involved.

“Seed dormancy is one of the most important biological mechanisms,” Gu said.

“The trait is important for seed-bearing plants, but of the detailed biological mechanism, we know very little.”

The National Science Foundation and the USDA National Research Initiative supported Gu’s seed dormancy research.

Jeanne Jones Manzer | Newswise Science News
Further information:
http://www.sdstate.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>