Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the continuous corn yield penalty

22.03.2013
As escalating corn prices have encouraged many farmers to switch to growing corn continuously, they wonder why they have been seeing unusually high yield reductions over the past several years. The University of Illinois conducted a six-year study that identified three key factors affecting yield in continuous corn (CC) systems.

"Prior to this study, the most common management recommendations for continuous corn production were to apply an additional 45 pounds of nitrogen per acre and reserve your best crop land for it," said U of I soil scientist and lead author Laura Gentry. "Very little was known about the agents or mechanisms causing reduced yields in continuous corn systems."

Although corn can be cropped continuously, it is widely accepted that there is a yield reduction compared to corn rotated with soybean (CS). This difference is referred to as the continuous corn yield penalty (CCYP), which is generally in the range of 20 to 30 bushels per acre. The 2012 growing season marked the third consecutive year of unusually high CCYP values in the U.S. Midwest, often with corn yields that were 30 to 50 bushels per acre less than corn following soybean.

The researchers conducted the experiment from 2005 to 2010 in east-central Illinois, beginning with corn produced in a third-year CC system or a CS rotation, at six N fertilizer rates. The study investigated: 1) how the yield penalty changed with time in CC, 2) under what conditions increasing the nitrogen (N) fertilizer rate reduced the penalty, and 3) what causes the penalty?

Each year, they determined an "agronomically optimum N rate" and corresponding yield value for each rotation (CC and CS). On average, corn yield at the agronomically optimum N rate for CC was 167 bushels, compared to 192 bushels per acre for CS – a CCYP of 25 bushels per acre. CCYP values ranged yearly from 9 to 42 bushels per acre.

Matias Ruffo, a co-author of the paper and Worldwide Agronomy Manager at The Mosaic Co., said, "To explore the causes of the CCYP, we tested a number of different weather- and yield-related measurements for their relationships with the CCYP. We found that with just three predictors, we could estimate the CCYP with almost 100 percent accuracy." The predictors were: 1) unfertilized CC yield, 2) years in CC, and 3) the difference between CC and CS delta yields.

The researchers found that the best predictor of the CCYP was unfertilized CC yield. In years when unfertilized CC yields were relatively high, the yield penalty was low, and vice versa. Unfertilized CC yield is an indicator of how much N the soil is supplying to the corn crop, either from residual fertilizer N or from decomposition of previous crop residues and other organic matter (N mineralization).

The second predictor of the CCYP, years in CC, was also strongly correlated with the CCYP. CCYP got worse with each additional year in the CC system through the seventh year, when the study was terminated.

This conclusion is at odds with the claims of many Corn Belt farmers who argue that corn yields in CC eventually attain the same level as CS rotations. On average, the CCYP in this study increased by 186 percent from third-year CC to fifth-year CC and 268 percent from third-year CC to seventh-year CC.

"Yield reductions resulting from additional years of continuous corn production mirror the effects of residue accumulation when corn is cropped continuously," said U of I crop physiologist Fred Below, another co-author. "It is well documented that corn residues introduce a host of physical, chemical, and biological effects that negatively influence corn yields."

Effects of accumulated corn residues include reduced soil temperature, increased soil moisture, reduced N fertilizer availability, and production of autotoxic chemicals, all of which can negatively affect growth and future corn crop development.

The final predictor of the CCYP, difference in CC and CS delta yields (the difference between the yield where no N was applied and the maximum yield under non-N limiting conditions), is probably a function of weather conditions, particularly during critical growth periods such as ovule determination and grain fill. Drought and heat can disproportionately reduce yields of the CC system relative to the CS system. This principle was demonstrated during the 2012 drought, when farmers reported yield reductions as large as 50 bushels per acre for CC systems compared to CS.

Based on this study, the authors concluded that the CCYP persists for at least seven years. However, during very favorable growing seasons, increased N rates can overcome the CCYP. Unfortunately, higher N rates do not eliminate the CCYP during average or poor growing seasons. This study concluded that the primary causes of the CCYP are: N availability, corn stover accumulation, and unfavorable weather.

"Given that weather cannot be controlled, and the optimum N fertilizer rate can be determined only after crop harvest, managing corn stover has the greatest potential for reducing the CCYP," said Gentry. The same research team is collaborating on a follow-up study investigating the effect of stover removal and tillage on the CCYP.

"Identifying Factors Controlling the Continuous Corn Yield Penalty" was published in the January 2013 issue of Agronomy Journal (105:295-303). It is an open-access article available at: https://www.crops.org/publications/aj/articles/105/2/295.

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>