Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the mystery of a major threat to wheat

02.06.2010
Agricultural Research Service (ARS) scientists have solved a longstanding mystery as to why a pathogen that threatens the world's wheat supply can be so adaptable, diverse and virulent. It is because the fungus that causes the wheat disease called stripe rust may use sexual recombination to adapt to resistant varieties of wheat.

ARS plant pathologist Yue Jin and his colleagues Les Szabo and Marty Carson at the agency's Cereal Disease Laboratory at St. Paul, Minn., have shown for the first time that stripe rust, caused by Puccinia striiformis, is capable of sexually reproducing on the leaves of an alternate host called barberry, a common ornamental. The fungus also goes through asexual mutation. But sexual recombination offers an advantage because it promotes rapid reshuffling of virulence gene combinations and produces a genetic mix more likely to pass along traits that improve the chances for survival.

Barberry (Berberis spp) is already controlled in areas where wheat is threatened by stem rust, caused by another fungal pathogen. But the work by the ARS team is expected to lead to better control of barberry in areas like the Pacific Northwest, where cool temperatures during most of the wheat growing season make stripe rust a particular threat.

The researchers suspended wheat straw infected with the stripe rust pathogen over barberry plants and found that fungal spores from the wheat infected the barberry. They also took infected barberry leaves, treated them to promote the release of spores, and exposed them to wheat. Tests confirmed that the wheat plants were infected within about 10 days.

The researchers began the study last year after finding infected leaves on barberry plants at two sites on the University of Minnesota campus. They initially thought the symptoms were a sign that the stem rust pathogen had overcome the resistance commonly found in U.S. varieties of barberry.

Instead, they found barberry serving as a sexual or "alternate" host for stripe rust. When the overwintering spores of the stripe rust fungus germinate in the spring, they produce spores that reach barberry leaves, forming structures on the top of the leaves that allow mating between races or strains of the fungus. Spores resulting from this mating can, in turn, infect wheat.

The results were recently published in Phytopathology.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priorities of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research Barberry Berberis spp Cereal Disease USDA stripe rust

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>