Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF/IFAS Finding Could Help Farmers Stop Potato, Tomato Disease

04.06.2014

A University of Florida scientist has pinpointed Mexico as the origin of the pathogen that caused the 1840s Irish Potato Famine, a finding that may help researchers solve the $6 billion-a-year disease that continues to evolve and torment potato and tomato growers around the world.

A disease called “late blight” killed most of Ireland’s potatoes, while today it costs Florida tomato farmers millions each year in lost yield, unmarketable crop and control expenses.

For more than a century, scientists thought the pathogen that caused late blight originated in Mexico. But a 2007 study contradicted earlier findings, concluding it came from the South American Andes.

UF plant pathology assistant professor Erica Goss wanted to clear up the confusion and after analyzing sequenced genes from four strains of the pathogen, found ancestral relationships among them that point to Mexico as the origin.

“The pathogen is very good at overcoming our management strategies,” said Goss, a UF Institute of Food and Agricultural Sciences faculty member. “To come up with better solutions to late blight, we need to understand the genetic changes that allow it to become more aggressive. By understanding past changes, we can design new strategies that are more likely to be robust to future genetic changes.”

Goss and eight colleagues analyzed the genes of potato late-blight pathogens from around the world. Potato late blight, which flourishes in cool, damp weather, is caused by the pathogen phytophthora infestans.

Scientists sequenced four genes from more than 100 phytophthora infestans samples, plus four closely related species, to tease out the pathogen’s origin. Knowing the origin provides insight into its genetic diversity and the ways it adapts to different environments, Goss said

The pathogen also moved from other related species to the potato late in the evolutionary history of potatoes, she said, perhaps one reason potatoes are so susceptible to the disease and why finding a breeding-based solution to the disease has been so difficult.

The pathogen costs $6 billion a year globally between direct crop damage and spraying, she said. In Florida, it damages tomatoes far more than potatoes.

Florida farmers lose millions each year due to late blight, said Gene McAvoy, Hendry County Extension director, who has monitored late blight in Southwest Florida for years.

A late-blight pandemic in 2009 made the pathogen a household term in much of the eastern U.S. It made its way to the Northeast via tomatoes in big-box retailers. After planting the tomatoes, many home gardeners and organic producers lost most, if not all, of their crop, Goss said.

“Just when we think we’re on top of it, a new strain shows up,” she said. “New strains have repeatedly appeared in the U.S. that are more aggressive or resistant to fungicides. This pathogen just keeps coming.”

Goss wrote the paper, published online Monday by Proceedings of the National Academy of Sciences, with scientists from eight other university and government agencies.

Contact Information

By Brad Buck, 352-294-3303, bradbuck@ufl.edu
Sources: Erica Goss, 352-273-4650, emgoss@ufl.edu
Gene McAvoy, 863-674-4092, gmcavoy@ufl.edu

Brad Buck | newswise
Further information:
http://www.ufl.edu

Further reports about: Agricultural Disease aggressive crop farmers genes pathogens potato strains strategies

More articles from Agricultural and Forestry Science:

nachricht Fungal intruder ante portas!
19.08.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Producing wholesome seed product on site
16.08.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>