Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF/IFAS Finding Could Help Farmers Stop Potato, Tomato Disease

04.06.2014

A University of Florida scientist has pinpointed Mexico as the origin of the pathogen that caused the 1840s Irish Potato Famine, a finding that may help researchers solve the $6 billion-a-year disease that continues to evolve and torment potato and tomato growers around the world.

A disease called “late blight” killed most of Ireland’s potatoes, while today it costs Florida tomato farmers millions each year in lost yield, unmarketable crop and control expenses.

For more than a century, scientists thought the pathogen that caused late blight originated in Mexico. But a 2007 study contradicted earlier findings, concluding it came from the South American Andes.

UF plant pathology assistant professor Erica Goss wanted to clear up the confusion and after analyzing sequenced genes from four strains of the pathogen, found ancestral relationships among them that point to Mexico as the origin.

“The pathogen is very good at overcoming our management strategies,” said Goss, a UF Institute of Food and Agricultural Sciences faculty member. “To come up with better solutions to late blight, we need to understand the genetic changes that allow it to become more aggressive. By understanding past changes, we can design new strategies that are more likely to be robust to future genetic changes.”

Goss and eight colleagues analyzed the genes of potato late-blight pathogens from around the world. Potato late blight, which flourishes in cool, damp weather, is caused by the pathogen phytophthora infestans.

Scientists sequenced four genes from more than 100 phytophthora infestans samples, plus four closely related species, to tease out the pathogen’s origin. Knowing the origin provides insight into its genetic diversity and the ways it adapts to different environments, Goss said

The pathogen also moved from other related species to the potato late in the evolutionary history of potatoes, she said, perhaps one reason potatoes are so susceptible to the disease and why finding a breeding-based solution to the disease has been so difficult.

The pathogen costs $6 billion a year globally between direct crop damage and spraying, she said. In Florida, it damages tomatoes far more than potatoes.

Florida farmers lose millions each year due to late blight, said Gene McAvoy, Hendry County Extension director, who has monitored late blight in Southwest Florida for years.

A late-blight pandemic in 2009 made the pathogen a household term in much of the eastern U.S. It made its way to the Northeast via tomatoes in big-box retailers. After planting the tomatoes, many home gardeners and organic producers lost most, if not all, of their crop, Goss said.

“Just when we think we’re on top of it, a new strain shows up,” she said. “New strains have repeatedly appeared in the U.S. that are more aggressive or resistant to fungicides. This pathogen just keeps coming.”

Goss wrote the paper, published online Monday by Proceedings of the National Academy of Sciences, with scientists from eight other university and government agencies.

Contact Information

By Brad Buck, 352-294-3303, bradbuck@ufl.edu
Sources: Erica Goss, 352-273-4650, emgoss@ufl.edu
Gene McAvoy, 863-674-4092, gmcavoy@ufl.edu

Brad Buck | newswise
Further information:
http://www.ufl.edu

Further reports about: Agricultural Disease aggressive crop farmers genes pathogens potato strains strategies

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>