Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF/IFAS Finding Could Help Farmers Stop Potato, Tomato Disease

04.06.2014

A University of Florida scientist has pinpointed Mexico as the origin of the pathogen that caused the 1840s Irish Potato Famine, a finding that may help researchers solve the $6 billion-a-year disease that continues to evolve and torment potato and tomato growers around the world.

A disease called “late blight” killed most of Ireland’s potatoes, while today it costs Florida tomato farmers millions each year in lost yield, unmarketable crop and control expenses.

For more than a century, scientists thought the pathogen that caused late blight originated in Mexico. But a 2007 study contradicted earlier findings, concluding it came from the South American Andes.

UF plant pathology assistant professor Erica Goss wanted to clear up the confusion and after analyzing sequenced genes from four strains of the pathogen, found ancestral relationships among them that point to Mexico as the origin.

“The pathogen is very good at overcoming our management strategies,” said Goss, a UF Institute of Food and Agricultural Sciences faculty member. “To come up with better solutions to late blight, we need to understand the genetic changes that allow it to become more aggressive. By understanding past changes, we can design new strategies that are more likely to be robust to future genetic changes.”

Goss and eight colleagues analyzed the genes of potato late-blight pathogens from around the world. Potato late blight, which flourishes in cool, damp weather, is caused by the pathogen phytophthora infestans.

Scientists sequenced four genes from more than 100 phytophthora infestans samples, plus four closely related species, to tease out the pathogen’s origin. Knowing the origin provides insight into its genetic diversity and the ways it adapts to different environments, Goss said

The pathogen also moved from other related species to the potato late in the evolutionary history of potatoes, she said, perhaps one reason potatoes are so susceptible to the disease and why finding a breeding-based solution to the disease has been so difficult.

The pathogen costs $6 billion a year globally between direct crop damage and spraying, she said. In Florida, it damages tomatoes far more than potatoes.

Florida farmers lose millions each year due to late blight, said Gene McAvoy, Hendry County Extension director, who has monitored late blight in Southwest Florida for years.

A late-blight pandemic in 2009 made the pathogen a household term in much of the eastern U.S. It made its way to the Northeast via tomatoes in big-box retailers. After planting the tomatoes, many home gardeners and organic producers lost most, if not all, of their crop, Goss said.

“Just when we think we’re on top of it, a new strain shows up,” she said. “New strains have repeatedly appeared in the U.S. that are more aggressive or resistant to fungicides. This pathogen just keeps coming.”

Goss wrote the paper, published online Monday by Proceedings of the National Academy of Sciences, with scientists from eight other university and government agencies.

Contact Information

By Brad Buck, 352-294-3303, bradbuck@ufl.edu
Sources: Erica Goss, 352-273-4650, emgoss@ufl.edu
Gene McAvoy, 863-674-4092, gmcavoy@ufl.edu

Brad Buck | newswise
Further information:
http://www.ufl.edu

Further reports about: Agricultural Disease aggressive crop farmers genes pathogens potato strains strategies

More articles from Agricultural and Forestry Science:

nachricht Improving artichoke root development, transplant quality
21.07.2016 | American Society for Horticultural Science

nachricht Genome of 6,000-year-old barley grains sequenced for first time
19.07.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>