Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M-led study finds herbivores can offset loss of plant biodiversity in grassland

10.03.2014

Research spanning 6 continents sheds light on important interactions among nutrients, grazers, and plants

Two wrongs may not make a right. But when it comes to grassland plant species diversity, it just might. Two impacts often controlled by humans — being fertilized and being eaten — can combine to the benefit of biodiversity, according to an innovative international study led by U of M researchers Elizabeth Borer and Eric Seabloom.

The findings, published March 9 in the online edition of Nature in advance of print publication, are important in a world where humans are changing both herbivore distribution and the supply of nutrients like nitrogen or phosphorus, and where understanding the interplay among nutrients, herbivores and plant growth is critical to our capacity to feed a growing human population and protect threatened species and ecosystems.

To conduct the study, Borer and Seabloom enlisted the help of the Nutrient Network, or NutNet, a collaborative international experiment they and a few colleagues founded in 2005 as a resource for understanding how grasslands around the world will respond to a changing environment. NutNet scientists at 40 sites on six continents set up research plots with and without added fertilizer and with and without fences to keep out the local herbivores such as deer, kangaroos, sheep or zebras. Every year since then, they have measured the amount of plant material grown, light reaching the ground, and number of species of plants growing in the plots.

When the researchers compared data across the 40 study sites, they found that fertilizing reduced the number of plant species in the plots as species less able to tolerate a lack of light were literally overshadowed by fast-growing neighbors. On both fertilized and unfertilized plots, where removal of vegetation by herbivores increased the amount of light that struck the ground, plant species diversity increased. And these results held true whether the grassland was in Minnesota, Argentina or China, and whether the herbivores involved were rabbits, sheep, elephants or something else.

"Biodiversity benefits humans and the environments that sustain us. Understanding how human actions control biodiversity is important for maintaining a healthy environment," says Borer. "What this suggests is that these two impacts, which are ubiquitous globally, dovetail with changes in light availability at the ground level, and that appears to be a big factor in maintaining or losing biodiversity in grasslands. In short, where we see a change in light, we see a change in diversity."

The findings add a key piece to the puzzle of how human impacts affect prairies, savannas, alpine meadows and other grasslands. Biodiversity plays an important role in how resilient communities of plants and animals are in the face of change. By showing how fertilization, grazing, and biodiversity are linked, the research moves us one step closer to understanding what we can do to help keep grassland ecosystems and all of the services they provide healthy and thriving in a changing world.

"Global patterns of biodiversity have largely defied explanation due to many interacting, local driving forces," says Henry Gholz, program director in the National Science Foundation's (NSF) Division of Environmental Biology, which funded the coordination of this research. "These results show that grassland biodiversity is likely largely determined by the offsetting influences of nutrition and grazing on light capture by plants."

###

Yann Hautier, a Marie Curie Fellow associated with both the Department of Ecology, Evolution, and Behavior at the University of Minnesota and the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich and U of M research scientist Eric Lind were co-authors of the study along with researchers from universities and government agencies around the world.

Stephanie Xenos | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: Biodiversity NutNet Seabloom diversity ecosystems grasslands healthy herbivores largely nutrients savannas sheep species

More articles from Agricultural and Forestry Science:

nachricht Two Most Destructive Termite Species Forming Superswarms in South Florida
27.03.2015 | University of Florida Institute of Food and Agricultural Sciences

nachricht Greater-than-additive management effects key in reducing corn yield gaps
18.03.2015 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>