Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015

Two of the most destructive termite species in the world -- responsible for much of the $40 billion in economic loss caused by termites annually -- are now swarming simultaneously in South Florida, creating hybrid colonies that grow quickly and have the potential to migrate to other states.

In an article published today in the journal PLOS ONE, a team of University of Florida entomologists has documented that the Asian and Formosan subterranean termite simultaneously produce hundreds of thousands of alates, or winged males and females. Both species have evolved separately for thousands of years, but in South Florida, they now have the opportunity to meet, mate and start new hybrid colonies.


UF/IFAS

UF/IFAS entomology Professor Nan-Yao Su and his research assistant have found evidence that the Asian and Formosan subterranean termites are swarming simultaneously.

While researchers have yet to determine if the hybrid termite is fertile or sterile, it likely poses a danger, said Nan-Yao Su, an entomology professor at the UF Fort Lauderdale Research and Education Center, part of UF’s Institute of Food and Agricultural Sciences.

“Because a termite colony can live up to 20 years with millions of individuals, the damaging potential of a hybrid colony remains a serious threat to homeowners even if the hybrid colony does not produce fertile winged termites,” Su said. “This is especially true when the colony exhibits hybrid vigor as we witnessed in the laboratory.”

UF scientists previously thought the two termite species had distinct swarming seasons that prevented them from interacting. Their new research indicates not only an overlap of seasons where the two species are interbreeding; it shows that male Asian termites prefer to mate with Formosan females rather than females of their own species, increasing the risk of hybridization.

“This is worrisome, as the combination of genes between the two species results in highly vigorous hybridized colonies that can develop twice as fast as the two parental species,” said Thomas Chouvenc, an assistant researcher who works with Su. “The establishment of hybrid termite populations is expected to result in dramatically increased damage to structures in the near future.”

Additionally, Chouvenc said, if hybridized colonies have the ability to produce large numbers of fertile alates, this new termite menace could inherit the invasive qualities of both parental species and make its way out of Florida.

Both the Asian and Formosan species already have spread to many areas of the world. The Formosan subterranean termite, which originated in China, is now established throughout the southeastern United States. The Asian subterranean termite, a tropical species originating in Southeast Asia, has spread to Brazil and the Caribbean Islands, making it potentially the most invasive termite in the world.

Despite their destructive nature, baits can be used to eliminate colonies of termites, Su said. Homeowners also can apply liquid insecticides in soil beneath and surrounding a structure to try to prevent termites from coming inside. Still, the threat of this new hybrid is real, the researchers say.

“Right now, we barely see the tip of the iceberg,” Su said. “But we know it’s a big one.”

The PLOS ONE article can be found at http://dx.plos.org/10.1371/journal.pone.0120745

By Brad Buck, 352-294-3303, bradbuck@ufl.edu

Sources: Nan-Yao Su, 954-577-6339, nysu@ufl.edu
Thomas Chouvenc, 954-557-6320, tomchouv@ufl.edu

Brad Buck | newswise
Further information:
http://www.ufl.edu

Further reports about: Agricultural Agricultural Sciences Food colony hybrid vigor parental species subterranean termite

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>