Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tryptophan-enriched diet reduces pig aggression

Feeding the amino acid tryptophan to young female pigs as part of their regular diet makes them less aggressive and easier to manage, according to a study by Agricultural Research Service (ARS) scientists and cooperators.

The tryptophan-enhanced diet reduced aggression and overall behavioral activity among young female pigs during the 8-month study. Tryptophan, which is only acquired through diet, is the precursor for the calming cerebral neurotransmitter serotonin. Keeping swine calm is important, because aggressive behavior can harm them and increase feed and medical costs for producers.

The study was done by ARS doctoral student Rosangela Poletto and animal scientist Jeremy Marchant-Forde at the ARS Livestock Behavior Research Unit in West Lafayette, Ind. Collaborators included biologist Heng-Wei Cheng at the ARS lab in West Lafayette, and Purdue University scientists Robert L. Meisel and Brian T. Richert.

The supplemented diet raised blood concentrations of tryptophan in 3-month-old females by 180 percent, and by 85 percent in 6-month-old females, resulting in calmer animals, mainly at the younger age. Persistent aggression in pigs can cause chronic stress, leading to poorer welfare, increased disease susceptibility and reduced growth and efficiency.

In the study, a diet with 2.5 times the normal amount of tryptophan was fed for one week to grower pigs (3 months old) and finisher pigs (6 months old). Another group of pigs received a normal diet. Behavioral activity and aggressiveness were measured before and after the seven days of diet supplementation.

To test aggression, researchers put an "intruder" pig in the pen until an aggressive interaction was triggered or for a maximum of five minutes. Pigs receiving the high-tryptophan diet showed less aggression—fewer attacked the intruder, and those that did attack were slower to do so—compared with the animals that didn't get the supplement.

Pigs form social groups that, over time, form stable hierarchies or "pecking orders." However, when new individuals are introduced, aggression is used to re-establish a new hierarchical order. If repeated changes in group composition occur, persistent aggression may arise, sometimes leading to physical injury and acute stress. A tryptophan-enriched diet may help producers avoid these problems, especially when groups of pigs are mixed together.

The research was published in the journal Applied Animal Behaviour Science.

ARS is the U.S. Department of Agriculture's principal intramural scientific research agency. The research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Sharon Durham | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>