Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical forest seed banks: a blast from the past

03.04.2009
Seeds of some tree species in the Panamanian tropical forest can survive for more than 30 years before germinating.

That is 10 times longer than most field botanists had believed.

Using the Lab's Center for Accelerator Mass Spectrometry to measure the amount of carbon 14 in seeds of the trees Croton billbergianus (Euphorbiaceae), Trema micrantha (Celtidaceae) and Zanthoxylum ekmannii ( Rutaceae), Lawrence Livermore National Laboratory scientist Tom Brown and University of Illinois at Urbana-Champaign colleague James Dalling found that seeds survived in the soil for 38, 31 and 18 years, respectively.

Previous demographic studies of pioneer tree species showed that seed persistence (the ability to survive in soil, awaiting favorable conditions for germination) is short, lasting only for a few years at most.

But in the tropical forests of Barro Colorado Island (BCI), Panama, Brown and Dalling found the seeds of some pioneer trees remain viable for many years.

“This is part of nature that wasn't really what people in the field thought was going on,” Brown said. “It turns out these seeds in soil just a few centimeters below the surface can survive a lot longer than anyone ever thought was possible.”

To increase the probability of encountering “old” seeds, Brown and Dalling used data from a forest plot to target sites in the forest occupied 20 years previously by species they suspected were capable of long-term persistence.

After Dalling germinated seeds extracting from surface soil layers at these sites, Brown carbon dated samples taken from the seed coat. However, unlike carbon dating techniques used by archeologists to estimate the age of objects from antiquity, he used a modern radiocarbon signal that is a consequence of atmospheric nuclear testing in the 1950s and early 1960s. The decline in radiocarbon concentration that has occurred since the test-ban treaty went into effect can be used as a signal to determine precisely when carbon became incorporated into plant tissue.

When disturbance kills canopy trees in tropical forest, light reaches the forest floor triggering the germination of seeds of pioneer tree species buried in the soil.

The age of these seeds, and thus the time that populations of pioneer species are able to survive between disturbance events, has long been open to question.

“This is a surprising result,” Dalling said. “Demographic models suggest that these species would not benefit from long persistence, and we doubted they would be able to survive anyway. Seeds dispersed onto the soil surface are prey to insect seed predators, and are exposed to an array of pathogens and decay organisms that proliferate in moist tropical soils.”

The results imply that buried seeds may be an important reservoir for genetic diversity in pioneer populations and may be as important as long distance dispersal in maintaining populations in fragmented habitats.

The research appears in the April edition of the journal, The American Naturalist.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>