Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical forest seed banks: a blast from the past

03.04.2009
Seeds of some tree species in the Panamanian tropical forest can survive for more than 30 years before germinating.

That is 10 times longer than most field botanists had believed.

Using the Lab's Center for Accelerator Mass Spectrometry to measure the amount of carbon 14 in seeds of the trees Croton billbergianus (Euphorbiaceae), Trema micrantha (Celtidaceae) and Zanthoxylum ekmannii ( Rutaceae), Lawrence Livermore National Laboratory scientist Tom Brown and University of Illinois at Urbana-Champaign colleague James Dalling found that seeds survived in the soil for 38, 31 and 18 years, respectively.

Previous demographic studies of pioneer tree species showed that seed persistence (the ability to survive in soil, awaiting favorable conditions for germination) is short, lasting only for a few years at most.

But in the tropical forests of Barro Colorado Island (BCI), Panama, Brown and Dalling found the seeds of some pioneer trees remain viable for many years.

“This is part of nature that wasn't really what people in the field thought was going on,” Brown said. “It turns out these seeds in soil just a few centimeters below the surface can survive a lot longer than anyone ever thought was possible.”

To increase the probability of encountering “old” seeds, Brown and Dalling used data from a forest plot to target sites in the forest occupied 20 years previously by species they suspected were capable of long-term persistence.

After Dalling germinated seeds extracting from surface soil layers at these sites, Brown carbon dated samples taken from the seed coat. However, unlike carbon dating techniques used by archeologists to estimate the age of objects from antiquity, he used a modern radiocarbon signal that is a consequence of atmospheric nuclear testing in the 1950s and early 1960s. The decline in radiocarbon concentration that has occurred since the test-ban treaty went into effect can be used as a signal to determine precisely when carbon became incorporated into plant tissue.

When disturbance kills canopy trees in tropical forest, light reaches the forest floor triggering the germination of seeds of pioneer tree species buried in the soil.

The age of these seeds, and thus the time that populations of pioneer species are able to survive between disturbance events, has long been open to question.

“This is a surprising result,” Dalling said. “Demographic models suggest that these species would not benefit from long persistence, and we doubted they would be able to survive anyway. Seeds dispersed onto the soil surface are prey to insect seed predators, and are exposed to an array of pathogens and decay organisms that proliferate in moist tropical soils.”

The results imply that buried seeds may be an important reservoir for genetic diversity in pioneer populations and may be as important as long distance dispersal in maintaining populations in fragmented habitats.

The research appears in the April edition of the journal, The American Naturalist.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>