Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree Species Composition Influences Nitrogen Loss From Forests

18.03.2009
The Catskill Mountains receive some of the highest nitrogen deposition rates in North America due to pollutants drifting, and a recent study in this region demonstrates how some forested watersheds are more capable than others in absorbing nitrogen. While nitrogen is an important nutrient for plant growth, excess levels are capable of acidifying soils and decreasing water quality.

Throughout the world, nitrogen compounds are released to the atmosphere from agricultural activities and combustion of fossil fuels. These pollutants are deposited to ecosystems as precipitation, gases, and particles, sometimes many hundreds of miles downwind of their release point.

The Catskill Mountains of southeastern New York are a case in point—though they contain little in the way of industrial or agricultural pollution sources, they receive some of the highest nitrogen deposition rates in North America due to pollutants drifting in from midwestern power plants and east-coast cities.

Anyone who grows plants for food, fiber, or flowers, knows that nitrogen is crucial for healthy plant growth. But excess nitrogen that leaches from a forest can acidify the soils and streams and decrease water quality. Prior research has shown that in addition to plant uptake, microbial processes are very important in retaining nitrogen in forest soils, and that forested watersheds in the Catskills vary markedly in the amount of nitrogen they can absorb and prevent from leaching away.

So why would atmospheric nitrogen deposition lead to increased losses of nitrogen from some forests and not from others? A study funded by the National Science Foundation and the U.S. Department of Agriculture provides some answers. The research, which is focused on the tree species control on nitrogen cycling dynamics in the Catskill Mountains, is published in the March-April 2009 issue of the Soil Science Society of America Journal.

Part of a long-term research project on nitrogen cycling in Catskill forests, this study utilized a stable isotope technique to determine how the microbes consume and transform nitrogen in the soil under stands of five different tree species that are common in the Catskills. Half of the forest plots also had experimental nitrogen fertilizer treatments. The study showed that forests dominated by sugar maple are particularly susceptible to nitrogen leaching, while soils under red oak and hemlock forests are better at retaining nitrogen and preventing leaching losses.

This difference was partially related to the ratio of carbon to nitrogen in the soils. The microbes under the different tree species vary considerably in their production of nitrate, the form of nitrogen that is most readily leached into streams. However, unlike previous studies from western forests, this study found very little consumption of nitrate by the soil microbes in any of the forest types. Because of the low nitrate consumption, the forest types that have high nitrate production (such as sugar maple) also have high nitrate losses via leaching.

Lead author Lynn Christenson of Vassar College in Poughkeepsie, NY noted, “The most significant difference we see in nitrogen cycling under sugar maple trees compared to other tree species are much higher rates of nitrification, with very little consumption of this nitrate occurring in sugar maple soils. Why the soils and trees are not consuming this nitrogen is still a mystery.”

Project Leader Gary Lovett of the Cary Institute of Ecosystem Studies in Millbrook, NY stated, “It is important for watershed managers to know that differences in tree species composition can influence nitrogen retention. Some forest types are more likely to saturate with nitrogen than others.”

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>