Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Poultry Litter Phosphorus: Threat of Accumulation?

30.01.2009
A recent analysis of soils in the Delmarva Peninsula has shown that two forms of phosphorus are heavily present as a result of composted poultry litter, and two scientists have measured the accumulation of one of these forms from the manure to the crop soils.

The Delmarva Peninsula, flanking the eastern shore of the Chesapeake Bay, is home to some 600 million chickens. The resulting poultry manure and some of the chicken house bedding material is usually composted and then spread onto croplands as a fertilizer.

Phosphorus-31 nuclear magnetic resonance (31P NMR) and other methods of soil analysis have previously shown that two forms of phosphorus – orthophosphate and phytate (aka myoinositol hexakis phosphate) – dominate composted poultry litter. Although much is known about the transport of orthophosphate in soils, very little is known about the fate of phytate, a compound that is indigestible by poultry and abundant in poultry litter. With six phosphate groups per molecule phytate has the potential to be a significant player in non-point phosphorus pollution.

As part of her doctoral dissertation research at Yale University, scientist Jane Hill worked with scientist Barbara Cade-Menun at Stanford University to investigate the fate of phytate in crop soils on the Delmarva Peninsula. Specifically, Hill and Cade-Menun measured changes in phosphorus forms along a spatial transect on two active poultry farms. Using 31P NMR and supporting analytical methods, they found that phytate concentration was high in manures (about 50% of total P) but was not retained in crop soils and ditch sediments, where concentrations dropped to 2 to 15% of the total P. A corresponding increase in soil and sediment orthophosphate was also measured.

The study concluded that phytate does not accumulate in soils, but rather, is most likely to be hydrolyzed in situ by microorganisms. Results of the study were published in the January-February issue of the Journal of Environmental Quality.

Research in the respective groups of Drs. Hill and Cade-Menun is ongoing. Dr. Hill is focused on assessing the timing and controls on phytate hydrolysis in soils. Dr. Cade-Menun is currently a nutrient cycling scientist with Agriculture and Agri-Food Canada at the Semiarid Prairie Agricultural Research Station, focusing on the impacts of agricultural nutrients on the environment.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/1/130.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened on July 19, 2008 at the Smithsonian's Natural History Museum in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>