Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Tools for Saving Water and Keeping Peaches Healthy

14.12.2012
Peach growers in California may soon have better tools for saving water because of work by U.S. Department of Agriculture (USDA) scientists in Parlier, Calif.

Agricultural Research Service (ARS) scientist Dong Wang is evaluating whether infrared sensors and thermal technology can help peach growers decide precisely when to irrigate in California's San Joaquin Valley. ARS is USDA's principal intramural scientific research agency, and the research supports the USDA priority of promoting international food security.

Irrigation is the primary source of water for agriculture in the valley during the summer, and wells have been forced to reach deeper to bring up enough water to meet increasing demands. Peaches also require much of their water from June through September, when temperatures and demands for water are at their highest.

Wang and Jim Gartung, an ARS agricultural engineer, installed 12 infrared temperature sensors in peach orchards at the San Joaquin Valley Agricultural Sciences Center in Parlier and gave trees one of four irrigation treatments: applying furrow or subsurface drip irrigation, with or without postharvest water stress.

They also measured crop yields and assessed the quality of the fruit to compare the output of trees grown under deficit irrigation with trees grown under normal conditions. Deficit irrigation has been used to produce some varieties of grapes and has been studied for its potential in fruit tree and row crop production. But it has yet to be widely adopted, in part because growers need better tools to strike a balance between saving water and keeping crops viable and healthy, according to Wang.

They used the sensors to measure temperatures in the tree canopies, and calculated a "crop water stress index" based on the differences between tree canopy temperatures and the surrounding air temperatures. Higher index numbers indicated more stressed trees.

The researchers found that midday canopy-to-air temperature differences in trees that were water-stressed postharvest were in the 10- to 15-degree Fahrenheit range, consistently higher than the 3- to 4-degree Fahrenheit range in the trees that were not water-stressed.

For comparison purposes, the researchers placed leaves from stressed and non-stressed trees in a pressure chamber and measured the pressure required to squeeze water out of them. When the trees are water-stressed, it takes more pressure to squeeze moisture from them.

The results, published in Agricultural Water Management, show that the pressure chamber results were consistent with data collected by the infrared sensors, which means the sensors may be an effective tool for managing water use in peach orchards.

Read more about this research in the November/December 2012 issue of Agricultural Research magazine.

Dennis O'Brien | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht How algae could save plants from themselves
11.05.2016 | Carnegie Institution for Science

nachricht Biofeedback system designed to control photosynthetic lighting
10.05.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>