Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tools For Discovering DNA Variations In Crop Genomes

16.07.2009
With the advent of high-throughput DNA sequencing technologies, it is now possible to cheaply and rapidly sequence hundreds of millions of bases in a matter of hours. A team of scientists have developed molecular and computational tools for the efficient and accurate identification of gene-enriched SNPs in crops.

The study of human genetics has been a successful venture for researchers in recent years. Several million single-nucleotide polymorphisms (SNPs) have been identified from the whole-genome resequencing of multiple individuals, which have served as genetic markers to pinpoint genes controlling common human diseases.

In contrast, the genome of a single cultivar or line has yet to be sequenced in its entirety for most crops of economic or societal importance. This slow pace of genomic progress can be mostly explained by the high costs and technical difficulties associated with sequencing crop genomes, which tend to be large in size and complex—containing a high amount of repetitive DNA and duplicated genes that are highly similar in sequence.

With the advent of high-throughput DNA sequencing technologies, it is now possible to cheaply and rapidly sequence hundreds of millions of bases in a matter of hours. A team of scientists at Cornell University (Ithaca, NY), the United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Cold Spring Harbor Laboratory (Cold Spring Harbor, NY), Roche Applied Science Corp. (Indianapolis, IN) and 454 Life Sciences (Branford, CT), have developed molecular and computational tools for the efficient and accurate identification of gene-enriched SNPs in crops. The large, complex genome of maize was used to evaluate these tools.

The study was funded by the National Science Foundation (NSF), Roche Applied Science Corp., and the USDA-ARS. Results from the study were published in the July 2009 issue of The Plant Genome.

In this research collaboration, an existing molecular technique was modified to enable gene-enrichment and resequencing of maize inbred lines B73 and Mo17 with massively parallel pyrosequencing. In addition, a custom computational pipeline was developed to analyze and assemble short reads, identify correctly mapped reads, and call high quality SNPs. With the implementation of these methods, the authors identified 126,683 gene-enriched SNPs between B73 and Mo17 at high accuracy.

“Next-generation sequencing technologies will greatly accelerate the resequencing of multiple to numerous individuals for every major crop species,” says Michael Gore, first co-author of the study. “Such efforts will facilitate the construction of SNP datasets on the order of millions that can be used in whole-genome association studies to assess the contribution of SNPs—common or rare—to complex traits. What we have learned from this pilot study will help us to construct a community SNP resource in maize that is comparable in scale to that of the human haplotype map”.

Although the majority of SNPs do not contribute to phenotypic variation, plant breeders and geneticists alike are interested in using SNPs as genetic markers. As a genetic marker, SNPs can be used for studies of genetic diversity and in the selection of superior plants. The SNPs identified in this study can be used for high-resolution genetic mapping of agronomic traits, which could eventually lead to the development of improved commercial maize hybrids.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://plantgenome.scijournals.org/content/2/2/121.full.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org
http://plantgenome.scijournals.org/content/2/2/121.full

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>