Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Tools For Discovering DNA Variations In Crop Genomes

16.07.2009
With the advent of high-throughput DNA sequencing technologies, it is now possible to cheaply and rapidly sequence hundreds of millions of bases in a matter of hours. A team of scientists have developed molecular and computational tools for the efficient and accurate identification of gene-enriched SNPs in crops.

The study of human genetics has been a successful venture for researchers in recent years. Several million single-nucleotide polymorphisms (SNPs) have been identified from the whole-genome resequencing of multiple individuals, which have served as genetic markers to pinpoint genes controlling common human diseases.

In contrast, the genome of a single cultivar or line has yet to be sequenced in its entirety for most crops of economic or societal importance. This slow pace of genomic progress can be mostly explained by the high costs and technical difficulties associated with sequencing crop genomes, which tend to be large in size and complex—containing a high amount of repetitive DNA and duplicated genes that are highly similar in sequence.

With the advent of high-throughput DNA sequencing technologies, it is now possible to cheaply and rapidly sequence hundreds of millions of bases in a matter of hours. A team of scientists at Cornell University (Ithaca, NY), the United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Cold Spring Harbor Laboratory (Cold Spring Harbor, NY), Roche Applied Science Corp. (Indianapolis, IN) and 454 Life Sciences (Branford, CT), have developed molecular and computational tools for the efficient and accurate identification of gene-enriched SNPs in crops. The large, complex genome of maize was used to evaluate these tools.

The study was funded by the National Science Foundation (NSF), Roche Applied Science Corp., and the USDA-ARS. Results from the study were published in the July 2009 issue of The Plant Genome.

In this research collaboration, an existing molecular technique was modified to enable gene-enrichment and resequencing of maize inbred lines B73 and Mo17 with massively parallel pyrosequencing. In addition, a custom computational pipeline was developed to analyze and assemble short reads, identify correctly mapped reads, and call high quality SNPs. With the implementation of these methods, the authors identified 126,683 gene-enriched SNPs between B73 and Mo17 at high accuracy.

“Next-generation sequencing technologies will greatly accelerate the resequencing of multiple to numerous individuals for every major crop species,” says Michael Gore, first co-author of the study. “Such efforts will facilitate the construction of SNP datasets on the order of millions that can be used in whole-genome association studies to assess the contribution of SNPs—common or rare—to complex traits. What we have learned from this pilot study will help us to construct a community SNP resource in maize that is comparable in scale to that of the human haplotype map”.

Although the majority of SNPs do not contribute to phenotypic variation, plant breeders and geneticists alike are interested in using SNPs as genetic markers. As a genetic marker, SNPs can be used for studies of genetic diversity and in the selection of superior plants. The SNPs identified in this study can be used for high-resolution genetic mapping of agronomic traits, which could eventually lead to the development of improved commercial maize hybrids.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://plantgenome.scijournals.org/content/2/2/121.full.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org
http://plantgenome.scijournals.org/content/2/2/121.full

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>