Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tomato Project Offers Potential for Crop Drought, Disease Resistance

11.05.2009
Scientific search in Arkansas to find ways to grow food in space produces patent-ready process for increase drought tolerance of crops while increasing nutritional values.

Arkansas – home of thousands of backyard gardens, farmer’s markets, and a summer festival that pays annual homage to the tomato – also is home to a team of scientists based at UALR that is developing a tomato plant hearty enough to grow in space and surviving down-to-earth droughts and disease.

More than providing fresh produce for astronauts on extended missions to Mars, the research has important implications for developing crops resistant to drought and other stresses while improving the nutritional value of food.

Dr. Mariya Khodakovskaya, assistant professor of applied science, and Dr. Stephen Grace, associate professor of biology, at UALR – the University of Arkansas at Little Rock – and researchers at Arkansas State University and University of Central Arkansas are preparing to patent their new and effective ways to increase production of antioxidants in plants and make them more tolerant to stresses such as drought and disease.

“We are working now on tomatoes, but we are identifying mechanisms and genes that are responsible for other traits and can be used for other crops more important in countries that have droughts,” Khodakovskaya said. “It has implications for earth agriculture as well as space agriculture, which is why the project has been funded for three years by Arkansas Space Grant Consortium.”

The scientists believe future investments will promote collaborative partnerships between UALR and private and public institutions throughout Arkansas that will make UALR more competitive in attracting research dollars to further expand undergraduate and graduate studies in biology, chemistry, environmental sciences, and related disciplines.

A year when she was affiliated with North Carolina State University, Khodakovskaya placed her experiment growing cherry tomatoes aboard the International Space Station.

“It was the first transgenic tomato tested in space conditions,” she said.

Her transgenic tomato plants show dramatic increases in drought tolerance, vegetative biomass and fruit lycopene concentration. Studies in Arkansas and worldwide have shown that antioxidants such as lycopene are important in the prevention of cancer and many other chronic diseases. These established tomato plants are an excellent model for identification of novel means to enhance production of lycopene and other antioxidants in plants.

Grace, who earned his Ph.D. at Duke University, has focused his research on diverse aspects of plant biology, including biochemical analysis of secondary metabolic pathways to environmental signaling mechanisms and the physiology of stress on plants.

He and Khodakovskaya’s cross-linked research projects are supported by grants from the P3 Research Center of Arkansas NSF EPSCoR Program – the Experimental Program to Stimulate Competitive Research – and the Arkansas Space Grant Consortium.

Dr. Khodakovskaya will identify key genes and gene networks involved in stress tolerance and activation of antioxidant production in tomato plants. Her team will also create new reproducible biological source of antioxidants by establishment of highly productive tomato “hairy roots” cultures.

Dr. Grace works on the biochemistry of flavonoids, another important group of plant phytochemicals that act as health promoting antioxidants. Flavonoids have shown promise in protection against coronary heart disease, neuron damage, certain cancers, and other age-related diseases.

“For this reason, there is great interest in developing crops with optimized levels and composition of these high value natural products,” Grace said. “Our group studies the light regulation of flavonoid synthesis in tomato in order to develop strategies to increase flavonoid levels for improved nutritional content.”

Other scientists working on the project are Dr. Nawab Ali, research associate professor in UALR’s Graduate Institute of Technology; Dr. Fabricio Medina-Bolivar of Arkansas State University; and Dr. J.D. Swanson of the University of Central Arkansas. Undergraduate and graduate students at each institution are involved in research projects directed at enhancing nutritional and pharmaceutical value of crops by genetic approaches.

“As soon as we develop a new tomato with drought tolerance and more antioxidants, we will test how it grows in space conditions,” Khodakovskaya said.

Mariya Khodakovskaya
UALR Department of Applied Scienct
(501) 371-7506
mvkhodakovsk@ualr.edu
Dr. Stephen Grace
UALR Department of Biology
(501) 568-3337
scgrace@ualr.edu

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>