Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can One-time Tillage Improve No-till?

28.06.2010
Study examines the effects of a one-time tillage on yield and soil structure in no-till crop production

A one-time tillage has no adverse effects on yield or soil properties on no-till land, according to field research conducted at the University of Nebraska-Lincoln. Although tillage is another expense for farmers and generally increases the risk of soil erosion, a one-time tillage may be performed to correct some problem, such as a perennial weed problem.

The feasibility study was conducted for five years at two locations in eastern Nebraska. Charles Wortmann led the interdisciplinary team in examining the effects of a one-time tillage on no-till land for grain yield, reducing stratification of soil properties, increasing soil organic matter, and improving soil physical properties. The results were published in the July-August 2010 edition of Agronomy Journal.

Continuous no-till crop production has been widely adopted for reduced fuel consumption and labor requirement, erosion control, improved surface soil properties, increased profitability, and often increased yield. Crop yields have generally increased in the western and southern parts of the U.S., although northern agricultural lands have seen some declines in yield. Nebraska occupies a transition zone, with little change in yield due to no-till.

The researchers were testing whether one-time tillage of no-till could help manage certain perennial weeds, and reduce phosphorus stratification and runoff. They also wanted to determine if a one-time tillage, by burying the enriched surface soil and bringing deeper, less improved soil to the surface, improve soil structure and the distribution of soil nutrients.

Tillage did reduce stratification of phosphorus, soil organic matter and soil bulk density for the first years, but by the end of the five year experiment there was no difference between one-time till and no-till treatments. One-time tillage had no effect on soil organic matter content in the surface one foot of soil after five years. One possible negative effect of tillage was reduced microbial biomass at one site, but it did not affect grain yield.

The study areas consisted of one plot of grain sorghum rotated with soybean and corn with soybean at the other location. Tillage treatments included deep plowing with moldboard plows or a mini-moldboard plow, and disk tillage, and was done in late fall or very early spring to have low soil temperature and microbial biomass preceding and following tillage to minimize soil organic matter losses.

The authors concluded that one-time tillage of no-till can be done in eastern Nebraska without measureable long-term effects on yield or soil properties except for a change in soil microbial communities. Since tilling increases erosion risk, the authors recommend tilling only to address problems that cannot be cost-effectively managed with no-till practices.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/files/publications/agronomy-journal/abstracts/102-4/aj10-0051-abstract.pdf.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>