Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time of day matters to thirsty trees

25.11.2009
The time of day matters to forest trees dealing with drought, according to a new paper produced by a research team led by Professor Malcolm Campbell, University of Toronto Scarborough's vice-principal for research and colleagues in the department of cell and systems biology at the St. George campus.

Capitalizing on their previous work to decode the genome of the poplar tree, the research team examined how poplar trees use their 45,000 genes to respond to drought.

Campbell and PhD student Olivia Wilkins, the lead researchers, along with researchers Levi Waldron, Hardeep Nahal and Nicholas Provart, had their findings published in the November 13 issue of the Plant Journal. The article is titled "Genotype and time of day shape the Populus drought response."

"Each gene is like a line of code in a computer program" says Campbell, a plant biologist. "Depending on which lines of code are used, the tree can create a different program to respond to environmental stimuli, like drought." The use of different combinations of genes creates different programs. The combination of genes that trees use in response to a stress, like drought, determines whether the tree can survive this stress or not.

In the past, researchers examined drought-responsive gene programs at a single time point – normally in the middle of the day when most researchers work in the lab or the field. Wilkins did her experiments so that she examined the gene programs at multiple times throughout the day and night.

Surprisingly, working together with University of Toronto bioinformaticians, the team found that trees used different drought response gene programs at different times of day. That is, the drought response gene program that the trees used in the middle of the day was different from the program used in the middle of the night.

"Previously, researchers referred to the drought response as though it was a single, simple program that ran all the time," Campbell notes. The new research shows that the story is not that simple. "Rather than one program, trees use multiple programs, each of which runs at a different time of day," says Wilkins.

The discovery that trees use different programs at different times of the day is described as a critical finding. Previous research may have overemphasised the importance of some genes in helping trees to contend with drought, and totally missed others that are important.

The new work provides insights and tools to enable future researchers to identify, conserve and breed trees that are better able to contend with drought. Drought is an increasingly-important malady for forest trees, as it can dramatically reduce forest growth, and, in severe cases, increase forest susceptibility to insect pests and bring about catastrophic forest death. Given the importance of forest trees in vast ecosystems the world over, and as a renewable resource of great economic value, a better understanding of how trees contend with drought can have far-reaching implications for the environment and the economy. The new findings could play a role in safeguarding one of Canada's most important natural resources, our forest trees.

This new University of Toronto research was supported by the Natural Sciences and Engineering Research Council of Canada and is published in one of the top-ranked plant research journals, the Plant Journal. To view the paper online, visit: http://www3.interscience.wiley.com/journal/122541844/abstract.

Eleni Kanavas | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>