Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No-till farming improves soil stability

12.05.2010
A joint Agricultural Research Service (ARS)-multi-university study across the central Great Plains on the effects of more than 19 years of various tillage practices shows that no-till makes soil much more stable than plowed soil.

The study was led by Humberto Blanco-Canqui at Kansas State University at Hays, Kan., and Maysoon Mikha at the ARS Central Great Plains Research Station in Akron, Colo. ARS researchers Joe Benjamin and Merle Vigil at Akron were part of the research team that studied four sites across the Great Plains: Akron; Hays and Tribune, Kan., and the University of Nebraska at Sidney.

No-till stores more soil carbon, which helps bind or glue soil particles together, making the first inch of topsoil two to seven times less vulnerable to the destructive force of raindrops than plowed soil.

The structure of these aggregates in the first inch of topsoil is the first line of defense against soil erosion by water or wind. Understanding the resistance of these aggregates to the erosive forces of wind and rain is critical to evaluating soil erodibility. This is especially important in semiarid regions such as the Great Plains, where low precipitation, high evaporation, and yield variability can interact with intensive tillage to alter aggregate properties and soil organic matter content.

Tillage makes soil less resistant to being broken apart by raindrops because the clumping is disrupted and soil organic matter is lost through oxidation when soil particles are exposed to air.

A paper on this research was published in a recent issue of the Soil Science Society of America Journal.

ARS is the principal intramural scientific research agency in the U.S. Department of Agriculture.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Don Comis | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>