Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New and old threats to soybean production

24.06.2011
University of Illinois researchers identified the top pathogens, pests and weeds affecting soybean production in a recent article in Food Security.

Soybean aphid, soybean rust, soybean cyst nematode, Sclerotina stem rot and the exotic pathogen, red leaf blotch, were featured as some of the top biotic constraints that may affect soybean production now and in the future.

"Enormous potential exists to increase future soybean production," said Glen Hartman, U of I professor of crop sciences and USDA-ARS research scientist. "Genetic resources, used through both traditional breeding and bioengineering, may provide the solutions needed to combat current and future disease problems."

As soybean production has increased over the past 50 years, so has the intensity of biotic constraints that ultimately threaten yield.

"Where soybean is grown every year or even every other year, pathogens often have increased in density to cause economic losses in yield," Hartman said. "Parasitic microorganisms, including bacteria, fungi, nematodes, Oomycetes, and viruses all contribute to economic damage. A similar story occurs for pests; many, such as aphids, beetles, mites, and stinkbugs, cause considerable economic damage to the soybean crop."

Although aphids, rust, nematode and Sclerotina stem rot are commonly known and recognized by soybean growers, less information is known on red leaf blotch, an exotic disease caused by the fungal pathogen Phoma glycinicola, he said.

"The fungus that causes red leaf blotch is listed on the USDA Agricultural Select Agent List – the same list as anthrax," Hartman said. "So far, this disease has only been reported in Africa. However, if red leaf blotch is found in the United States, a recovery plan through the USDA-APHIS program has been developed that outlines a course of action to prevent it from spreading."

Red leaf blotch symptoms include lesions on foliage, petioles, pods and stems. The fungus does not appear to be seedborne, but may be transported along with soil and other debris in grain. Yield losses of up to 50 percent were documented in Zambia and Zimbabwe in the 1980s.

"We don't want to scare people because this disease has not been found in the United States," Hartman said. "But we do want growers to be aware of it because they are typically the ones to find new pathogens, pests and weeds in their fields. Our goal is to build awareness among crop specialists and producers so we can stay ahead of it."

Hartman said more research is needed to develop molecular diagnostic techniques to identify this pathogen from other common foliar soybean pathogens, to provide better information on fungicide chemistry and application timing, to develop varietal resistance and gather more data to develop predictive models for potential containment and management.

To successfully reduce losses due to pathogens and pests, a number of practices used alone or in combination may be needed; these include cultural and seed sanitation techniques, pesticide applications, and deployment of soybean cultivars with resistance.

"Biosecurity of food crops is important because we don't want to suffer food shortages – whether it's due to natural disasters or pathogens and pests that we can sometimes control," Hartman said. "If you are talking about food and crop improvement, you are always talking about reducing diseases and pests."

This article, "Crops that feed the World 2. Soybean – worldwide production, use, and constraints caused by pathogens and pests," appeared in Food Security. Researchers included Hartman, Ellen West and Theresa Herman of the U of I. Funding was provided by the Illinois Soybean Association, the North Central Soybean Research Program and the Elizabeth Hageman Endowed Graduate Research Fellowship.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>