Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The saplings go their own way / the dominance of generalists among tropical tree

09.09.2014

In tropical rainforests, most young trees grow spatially independent from their parent trees. This means that it is not possible to predict where seedlings will take root, and less specialised species therefore have an advantage even in the species-rich rainforests of the tropics.

This is the finding of a study, conducted by researchers at the Helmholtz Centre for Environmental Research (UFZ), the University of California and the Smithsonian Tropical Research Institute, the results of which were published recently in the prestigious journal Proceedings of the Royal Society B.


A diverse, lowland tropical forest in the Panama Canal. On Barro Colorado Island this rain forest hosts more than 300 tree and shrub species. Stephan Getzin, UFZ


Remnants of BCI's famous Big Tree. This kapok tree (Ceiba pentandra) had a crown averaging 60 m in diameter. It was the largest crown known on the planet for a tree with a single stem. Stephan Getzin, UFZ

For their study the scientists evaluated data from six forest censuses conducted over the past decades on Barro Colorado Island in the Panama Canal. A total of 300 different tree species grow in this 50 ha lowland rainforest. 65 species were selected on an area measuring 1000 x 500 metres. Each species was represented by at least 50 recruits and at least 50 adults, so as to rule out statistical errors.

The researchers analysed the spatial distribution between the different generations and found no spatial association between the parent trees and their offspring in around three-quarters of the species. “This result was very surprising because seed dispersal in this tropical forest is usually very limited, so we would expect the offspring to grow close to the parent trees,” explains Dr Stephan Getzin of the UFZ. The researchers call the pattern they observed “spatial independence” and believe it stems from random spatial processes, including seed dispersal by animals. The stochastic spatial processes interfere with the classic ecological theory of predictable dependence, resulting in de facto independence.

The results of the study support the “neutral theory” developed by Stephen P. Hubbell of the University of California, who was also involved in this paper. Neutral theory attempts to explain the biodiversity of tropical rainforests with the simplified assumption that all tree species behave in the same way. Stochastic processes play an important role in this theory. In species-rich forests, every tree has random neighbours.

According to Hubbell, species have become generalists because they do not know which neighbours they will be competing with. The new study shows that stochastic influences also play an important part in determining the location of young trees, i.e. the type of habitat in which they will grow, which again turns tree species into generalists.

The data from the lowland rainforest of Panama and the tree coordinates from a mountainous rainforest of Sri Lanka form a unique resource. In these two rainforests, the Smithsonian Tropical Research Institute and countless volunteers have for years been recording every tree with a diameter wider than a pencil on a plot measuring between 25 and 50 hectares. A forest census is carried out every five years, so it is likely that no other forest in the world is as well documented as these two.

They represent unique opportunities for biodiversity researchers to explore the interactions between different plant species. UFZ researchers use rainforest models like FORMIND and FORMIX3 for this purpose. “Our model covers between 50,000 and 100,000 trees and every change has to be calculated for every tree. This results in two million sets of parameters for each simulation run, which takes a week or two even with high-performance computers,” explains Dr Thorsten Wiegand of the UFZ.

The recently published research findings are part of the Spatiodiversity project. A team of ten scientists led by UFZ modelling experts Dr Thorsten Wiegand and Prof. Andreas Huth have spent the last five years using computer models to analyse ecosystems to explore the composition and dynamics of species-rich communities in tropical rainforests. The research received over two million euros in funding from the European Research Council (ERC), since advances in this field are important for protecting biodiversity in the context of climate and land use changes, and for calculating carbon balances. Tilo Arnhold

Publication:
Getzin S, Wiegand T, Hubbell SP. (2014): Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B, 20140922.
http://dx.doi.org/10.1098/rspb.2014.0922

The study was founded by the European Research Council (ERC advanced grant no. 233066), the National Science Foundation (NSF), the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Celera Foundation und supported by numerous private individuals.

For further information please contact:
Dr Stephan Getzin, PD Dr habil. Thorsten Wiegand
Helmholtz Centre for Environmental Research (UFZ)
phone: +49-(0)341-235-1719, -1714
http://www.ufz.de/index.php?en=32734
http://www.thorsten-wiegand.de/towi_ERC.html
or via
Tilo Arnhold, Susanne Hufe (UFZ PR)
phone: +49-(0)341-235-1635, -1635
http://www.ufz.de/index.php?en=640

Additional Links:
ERC advanced grant „Spatiodiversity - Towards a unified spatial theory of biodiversity“
http://www.helmholtz.de/forschung/eu_projekte/ideen/erc_advanced_grants/spatiodi...

Hubbel Lab at the University of California:
http://www.stri.si.edu/english/scientific_staff/staff_scientist/scientist.php?id...

Center for Tropical Forest Science at the Smithsonian Tropical Research Institute
http://www.ctfs.si.edu/

Barro Colorado Island (BCI):
http://www.stri.si.edu/english/research/facilities/terrestrial/barro_colorado/

ERC provides millions for biodiversity research (Press release from October 29th, 2009):
http://www.ufz.de/index.php?en=19003

Spatial patterns in tropical forests can help to understand their high biodiversity (Press release, September 25th, 2007)
http://www.ufz.de/index.php?en=15138

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?en=33170

Tilo Arnold | UFZ News

Further reports about: ERC Environmental Helmholtz Helmholtz-Zentrum UFZ dominance rainforests species tropical

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>