Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The saplings go their own way / the dominance of generalists among tropical tree

09.09.2014

In tropical rainforests, most young trees grow spatially independent from their parent trees. This means that it is not possible to predict where seedlings will take root, and less specialised species therefore have an advantage even in the species-rich rainforests of the tropics.

This is the finding of a study, conducted by researchers at the Helmholtz Centre for Environmental Research (UFZ), the University of California and the Smithsonian Tropical Research Institute, the results of which were published recently in the prestigious journal Proceedings of the Royal Society B.


A diverse, lowland tropical forest in the Panama Canal. On Barro Colorado Island this rain forest hosts more than 300 tree and shrub species. Stephan Getzin, UFZ


Remnants of BCI's famous Big Tree. This kapok tree (Ceiba pentandra) had a crown averaging 60 m in diameter. It was the largest crown known on the planet for a tree with a single stem. Stephan Getzin, UFZ

For their study the scientists evaluated data from six forest censuses conducted over the past decades on Barro Colorado Island in the Panama Canal. A total of 300 different tree species grow in this 50 ha lowland rainforest. 65 species were selected on an area measuring 1000 x 500 metres. Each species was represented by at least 50 recruits and at least 50 adults, so as to rule out statistical errors.

The researchers analysed the spatial distribution between the different generations and found no spatial association between the parent trees and their offspring in around three-quarters of the species. “This result was very surprising because seed dispersal in this tropical forest is usually very limited, so we would expect the offspring to grow close to the parent trees,” explains Dr Stephan Getzin of the UFZ. The researchers call the pattern they observed “spatial independence” and believe it stems from random spatial processes, including seed dispersal by animals. The stochastic spatial processes interfere with the classic ecological theory of predictable dependence, resulting in de facto independence.

The results of the study support the “neutral theory” developed by Stephen P. Hubbell of the University of California, who was also involved in this paper. Neutral theory attempts to explain the biodiversity of tropical rainforests with the simplified assumption that all tree species behave in the same way. Stochastic processes play an important role in this theory. In species-rich forests, every tree has random neighbours.

According to Hubbell, species have become generalists because they do not know which neighbours they will be competing with. The new study shows that stochastic influences also play an important part in determining the location of young trees, i.e. the type of habitat in which they will grow, which again turns tree species into generalists.

The data from the lowland rainforest of Panama and the tree coordinates from a mountainous rainforest of Sri Lanka form a unique resource. In these two rainforests, the Smithsonian Tropical Research Institute and countless volunteers have for years been recording every tree with a diameter wider than a pencil on a plot measuring between 25 and 50 hectares. A forest census is carried out every five years, so it is likely that no other forest in the world is as well documented as these two.

They represent unique opportunities for biodiversity researchers to explore the interactions between different plant species. UFZ researchers use rainforest models like FORMIND and FORMIX3 for this purpose. “Our model covers between 50,000 and 100,000 trees and every change has to be calculated for every tree. This results in two million sets of parameters for each simulation run, which takes a week or two even with high-performance computers,” explains Dr Thorsten Wiegand of the UFZ.

The recently published research findings are part of the Spatiodiversity project. A team of ten scientists led by UFZ modelling experts Dr Thorsten Wiegand and Prof. Andreas Huth have spent the last five years using computer models to analyse ecosystems to explore the composition and dynamics of species-rich communities in tropical rainforests. The research received over two million euros in funding from the European Research Council (ERC), since advances in this field are important for protecting biodiversity in the context of climate and land use changes, and for calculating carbon balances. Tilo Arnhold

Publication:
Getzin S, Wiegand T, Hubbell SP. (2014): Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B, 20140922.
http://dx.doi.org/10.1098/rspb.2014.0922

The study was founded by the European Research Council (ERC advanced grant no. 233066), the National Science Foundation (NSF), the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Celera Foundation und supported by numerous private individuals.

For further information please contact:
Dr Stephan Getzin, PD Dr habil. Thorsten Wiegand
Helmholtz Centre for Environmental Research (UFZ)
phone: +49-(0)341-235-1719, -1714
http://www.ufz.de/index.php?en=32734
http://www.thorsten-wiegand.de/towi_ERC.html
or via
Tilo Arnhold, Susanne Hufe (UFZ PR)
phone: +49-(0)341-235-1635, -1635
http://www.ufz.de/index.php?en=640

Additional Links:
ERC advanced grant „Spatiodiversity - Towards a unified spatial theory of biodiversity“
http://www.helmholtz.de/forschung/eu_projekte/ideen/erc_advanced_grants/spatiodi...

Hubbel Lab at the University of California:
http://www.stri.si.edu/english/scientific_staff/staff_scientist/scientist.php?id...

Center for Tropical Forest Science at the Smithsonian Tropical Research Institute
http://www.ctfs.si.edu/

Barro Colorado Island (BCI):
http://www.stri.si.edu/english/research/facilities/terrestrial/barro_colorado/

ERC provides millions for biodiversity research (Press release from October 29th, 2009):
http://www.ufz.de/index.php?en=19003

Spatial patterns in tropical forests can help to understand their high biodiversity (Press release, September 25th, 2007)
http://www.ufz.de/index.php?en=15138

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Weitere Informationen:

http://www.ufz.de/index.php?en=33170

Tilo Arnold | UFZ News

Further reports about: ERC Environmental Helmholtz Helmholtz-Zentrum UFZ dominance rainforests species tropical

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>