Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mystery of monodominance - how natural monocultures evolve in the rainforest

06.09.2016

Tropical rainforests are richer in species than any other area on earth. In spite of this diversity, there are large areas in which one species of tree dominates. Scientists have now developed a computer model to explain this phenomenon, which is called “Monodominance“: One species of tree can naturally dominate a forest over centuries, if it invests more in the weight of its seeds than the competition and if these seeds are also dispersed across a shorter distance, write scientists from the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Oldenburg, in the Royal Society journal Interface.

In ecology, monodominance is identified as a condition in which at least 60%, or often even 90% of trees in a natural forest belong to the same tree species. We know of at least 22 species from eight families that create forest areas of this kind. How this is achieved is a mystery on which ecologists have speculated for decades.


Gilbertiodendron dewevrei is one of the monodominant tree species from the tropical forests of Western and Central Africa.

Photo: X. van der Burgt, RBG Kew.

Gilbertiodendron dewevrei is one of the monodominant tree species from the tropical forests of Western and Central Africa, and is amongst the best researched species, even if there is no English name for it as yet. Its heavy timber is traded under the name Limbali.

The evergreen tree from the Caesalpinioideae family can grow up to 45 metres tall and is primarily striking because of its fruit, which can grow up to 30 cm long and contain up to six seeds. The seeds are eaten by of the most diverse of mammals including lowland gorillas, although they host poisonous compounds. For this reason, they are only roasted, cooked or made into porridge by the people of Central Africa during periods of food shortage.

Compared with the seeds of other tropical trees, which generally weigh less than one gram, the seeds of the G. dewevrei, are extremely heavy at 20 grams and are therefore not transported by wind, but usually remain within a radius of six metres from the mother tree. As a result, the species propagates extremely slowly – about 100 metres in 200 to 300 years.

Gilbertiodendron dewevrei then accounts for up to 90% of the canopy, obstructing the growth of other species. In contrast, the seedlings themselves are highly tolerant to shade, and can survive under the old trees until they die out and make room for new ones. In this way, other tree species are also replaced until G. dewevrei dominates areas measuring up to 100 square kilometres.

For the purposes of the study, the team around Martin Kazmierczak and Pia Backmann created a computer model of a tropical forest measuring about 10,000 hectares with eight tree species. They then observed, in stages of one year, how the composition of the species developed with different variables such as distribution radius, mortality and seed mass. Although all eight species were initially distributed at random, after 10,000 years, clumps of a monodominant kind began to appear, whose trees were forming a certain number of clusters. The computer model developed by the team is, of their own admission, the very first to model the emergence of monodominance by testing alternative hypotheses to explain the phenomenon. This demonstrated that the clusters of the monodominant tree species accumulate and survive if this species is more invested in the seed mass than its neighbouring species.

“Species like the ones we investigate must therefore invest around 50% more energy in their seeds than their competitors, which will be able to distribute their lighter seeds across longer distances”, reports Pia Backmann from UFZ and iDiv. “This strategy of forming clusters in one place is in fact a disadvantage to “globetrotters”, which disperse their seeds far and wide. However, if one species manages to eclipse its competitors in the truest sense of the word, and tolerate more shade than the others, then it will indeed prosper. As such, accumulations of a species are formed that slowly displace other species and establish monodominant areas.

The phenomenon of monodominance could gain significance through human influence: Trees with large, heavy seeds mostly use animals for distribution. If this chain of logistics falters, however, because the carriers are depleted by humans, then the trees will be forced to settle and form clumps. “An important message from our results is thus: Through its activities, humanity not only reduces areas of tropical forests; it also changes their composition and ensures that they are less diverse than before,” summarises Backmann. Tilo Arnhold

Publication:

Martin Kazmierczak, Pia Backmann, José M. Fedriani, Rico Fischer, Alexander K. Hartmann, Andreas Huth, Felix May, Michael S. Müller, Franziska Taubert, Volker Grimm, Jürgen Groeneveld (2016): Monodominance in tropical forests: modelling reveals emerging clusters and phase transitions. J. R. Soc. Interface 2016 13 20160123; DOI: 10.1098/rsif.2016.0123. Published 6 April 2016
http://dx.doi.org/10.1098/rsif.2016.0123
The study was founded by the European Research Council (ERC advanced grant no. 233066) and the German Research Foundation (DFG-FTZ 118).

Further Information:

Pia Backmann
German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ)
Phone: +49-(0)341-235-1016
https://www.idiv.de/en/the-centre/employees/details/eshow/backmann-pia.html & http://www.ufz.de/index.php?en=36521
as well as
Volker Hahn/ Tilo Arnhold, iDiv Public Relations
Phone: +49-(0)341-9733-154, -197
http://www.idiv.de/de/presse/mitarbeiterinnen.html
and
Susanne Hufe, UFZ Public Relations
Phone: +49-(0)341-235-1630
http://www.ufz.de/index.php?en=36336

Links:

The saplings go their own way - A new explanation for the dominance of generalists among tropical trees (UFZ Press release, 9 September 2014)
https://www.ufz.de/index.php?en=35283
The Young Biodiversity Research Training Group – yDiv
https://www.idiv.de/en/ydiv.html
Gilbertiodendron dewevrei
http://www.kew.org/science-conservation/plants-fungi/gilbertiodendron-dewevrei-a...

About the German Centre for Integrative Biodiversity Research (iDiv)
iDiv is a central facility of the University of Leipzig within the meaning of Section 92 (1) of the Act on Academic Freedom in Higher Education in Saxony (Sächsisches Hochschulfreiheitsgesetz, SächsHSFG). It is run together with the Martin Luther University Halle-Wittenberg and the Friedrich Schiller University Jena, as well as in cooperation with the Helmholtz Centre for Environmental Research – UFZ.
The following non-university research institutions are involved as cooperation partners: the Helmholtz Centre for Environmental Research – UFZ, the Max Planck Institute for Biogeochemistry (MPI BGC), the Max Planck Institute for Chemical Ecology (MPI CE), the Max Planck Institute for Evolutionary Anthropology (MPI EVA), the Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, the Leibniz Institute of Plant Biochemistry (IPB), the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) and the Leibniz Institute Senckenberg Museum of Natural History Görlitz (SMNG). https://www.idiv.de/en.html

Weitere Informationen:

https://www.idiv.de/en/press/press-releases/press_release_single_view/news_artic... press release
http://dx.doi.org/10.1098/rsif.2016.0123 paper

Tilo Arnhold | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>