Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thai Hill Farmers Help Preserve Genetic Diversity of Rice

31.07.2009
Traditional rice cultivation methods practiced in the isolated hillside farms of Thailand are helping preserve the genetic diversity of rice, one of the world's most important food crops, according to a new study by researchers at Washington University in St. Louis and Chiang Mai University in Thailand.

Rice is one of the most important crops worldwide, as it feeds over half of the world's population. Domesticated rice is an important supply of the world's rice. However, these strains are genetically static and cannot adapt to changing growing conditions. Traditional varieties, or landraces, of rice are genetically evolving and provide a pool of traits that can be tapped to improve crops worldwide.

Research from Barbara A. Schaal, Ph.D., the Mary-Dell Chilton Distinguished Professor of biology in Arts & Sciences at Washington University in St. Louis, and her colleagues at Chiang Mai University in Thailand shows how natural genetic drift and agricultural practices of the traditional farmers combine to influence the genetic diversity of a given landrace of rice.

Schaal is also involved in science policy, serving as vice president of the National Academy of Sciences and recently appointed to the President's Council of Advisors on Science and Technology.

Schaal and her colleagues studied a landrace of rice grown by the Karen people in Thailand. They compared the genetic variation among the same variety of rice grown in different fields and villages. The genetics of the rice population fits the isolation by distance model, much like a native plant species. The further apart fields are, the more genetically distinct they are.

The research, published in the Proceedings of the National Academy of Sciences, is funded by the McKnight Foundation and the Thailand Research Fund.

In the lowlands of Thailand, farmers grow modern high-yield rice. In the hills, the Karen people practice traditional agriculture, growing ancestral varieties of rice with traditional practices. Expert farmers play a role in maintaining their crop's genetic diversity by exchanging and choosing seeds to plant the following year.

"It's interesting to see how the expert farmers interact with the plants. For example, there was a purple mutation that occurred in one of the expert farmer's fields. He was very curious about it. He took the seeds and grew it off in a corner because he wanted to see what it looked like and tasted like. That's probably how humans domesticated plants, smart people were making smart choices in what to plant and grow," Schaal said.

Many crops grown today have been genetically optimized to consistently give a large yield. Seeds are purchased from a supplier and the plants are all genetically similar.

"Most modern varieties of crops, like corn in the Midwest or high-yield rice in the lowlands of Thailand, are artificial constructs developed by plant breeders. They are extraordinarily important in feeding the world. But they are static and not evolving in farmer's fields," Schaal said.

The rice that the Karen people grow is genetically dynamic, due to natural drift and the farmer's artificial selection. Each year, the farmers choose the seeds that grow best in their fields, which may differ in soil type, elevation, and temperature from other fields, to plant next season. Their crop is constantly evolving in response to local conditions.

"My colleagues believe that those local varieties bred within a village are better than any one single variety could be. Under these circumstances, the farmers have it right," Schaal said.

Although most agriculture in the United States focuses on growing high-yield crops to produce food for people living in cities, landraces of corn and other crops exist in seed banks.

"There is a movement among Native Americans in Arizona to grow ancestral varieties of crops. These varieties are important because they are adapted to hot and dry conditions, something that will become more prevalent as our climate changes," Schaal said.

Time will tell if those farmers "get it right" too.

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>