Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thai Hill Farmers Help Preserve Genetic Diversity of Rice

31.07.2009
Traditional rice cultivation methods practiced in the isolated hillside farms of Thailand are helping preserve the genetic diversity of rice, one of the world's most important food crops, according to a new study by researchers at Washington University in St. Louis and Chiang Mai University in Thailand.

Rice is one of the most important crops worldwide, as it feeds over half of the world's population. Domesticated rice is an important supply of the world's rice. However, these strains are genetically static and cannot adapt to changing growing conditions. Traditional varieties, or landraces, of rice are genetically evolving and provide a pool of traits that can be tapped to improve crops worldwide.

Research from Barbara A. Schaal, Ph.D., the Mary-Dell Chilton Distinguished Professor of biology in Arts & Sciences at Washington University in St. Louis, and her colleagues at Chiang Mai University in Thailand shows how natural genetic drift and agricultural practices of the traditional farmers combine to influence the genetic diversity of a given landrace of rice.

Schaal is also involved in science policy, serving as vice president of the National Academy of Sciences and recently appointed to the President's Council of Advisors on Science and Technology.

Schaal and her colleagues studied a landrace of rice grown by the Karen people in Thailand. They compared the genetic variation among the same variety of rice grown in different fields and villages. The genetics of the rice population fits the isolation by distance model, much like a native plant species. The further apart fields are, the more genetically distinct they are.

The research, published in the Proceedings of the National Academy of Sciences, is funded by the McKnight Foundation and the Thailand Research Fund.

In the lowlands of Thailand, farmers grow modern high-yield rice. In the hills, the Karen people practice traditional agriculture, growing ancestral varieties of rice with traditional practices. Expert farmers play a role in maintaining their crop's genetic diversity by exchanging and choosing seeds to plant the following year.

"It's interesting to see how the expert farmers interact with the plants. For example, there was a purple mutation that occurred in one of the expert farmer's fields. He was very curious about it. He took the seeds and grew it off in a corner because he wanted to see what it looked like and tasted like. That's probably how humans domesticated plants, smart people were making smart choices in what to plant and grow," Schaal said.

Many crops grown today have been genetically optimized to consistently give a large yield. Seeds are purchased from a supplier and the plants are all genetically similar.

"Most modern varieties of crops, like corn in the Midwest or high-yield rice in the lowlands of Thailand, are artificial constructs developed by plant breeders. They are extraordinarily important in feeding the world. But they are static and not evolving in farmer's fields," Schaal said.

The rice that the Karen people grow is genetically dynamic, due to natural drift and the farmer's artificial selection. Each year, the farmers choose the seeds that grow best in their fields, which may differ in soil type, elevation, and temperature from other fields, to plant next season. Their crop is constantly evolving in response to local conditions.

"My colleagues believe that those local varieties bred within a village are better than any one single variety could be. Under these circumstances, the farmers have it right," Schaal said.

Although most agriculture in the United States focuses on growing high-yield crops to produce food for people living in cities, landraces of corn and other crops exist in seed banks.

"There is a movement among Native Americans in Arizona to grow ancestral varieties of crops. These varieties are important because they are adapted to hot and dry conditions, something that will become more prevalent as our climate changes," Schaal said.

Time will tell if those farmers "get it right" too.

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>