Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thai Hill Farmers Help Preserve Genetic Diversity of Rice

31.07.2009
Traditional rice cultivation methods practiced in the isolated hillside farms of Thailand are helping preserve the genetic diversity of rice, one of the world's most important food crops, according to a new study by researchers at Washington University in St. Louis and Chiang Mai University in Thailand.

Rice is one of the most important crops worldwide, as it feeds over half of the world's population. Domesticated rice is an important supply of the world's rice. However, these strains are genetically static and cannot adapt to changing growing conditions. Traditional varieties, or landraces, of rice are genetically evolving and provide a pool of traits that can be tapped to improve crops worldwide.

Research from Barbara A. Schaal, Ph.D., the Mary-Dell Chilton Distinguished Professor of biology in Arts & Sciences at Washington University in St. Louis, and her colleagues at Chiang Mai University in Thailand shows how natural genetic drift and agricultural practices of the traditional farmers combine to influence the genetic diversity of a given landrace of rice.

Schaal is also involved in science policy, serving as vice president of the National Academy of Sciences and recently appointed to the President's Council of Advisors on Science and Technology.

Schaal and her colleagues studied a landrace of rice grown by the Karen people in Thailand. They compared the genetic variation among the same variety of rice grown in different fields and villages. The genetics of the rice population fits the isolation by distance model, much like a native plant species. The further apart fields are, the more genetically distinct they are.

The research, published in the Proceedings of the National Academy of Sciences, is funded by the McKnight Foundation and the Thailand Research Fund.

In the lowlands of Thailand, farmers grow modern high-yield rice. In the hills, the Karen people practice traditional agriculture, growing ancestral varieties of rice with traditional practices. Expert farmers play a role in maintaining their crop's genetic diversity by exchanging and choosing seeds to plant the following year.

"It's interesting to see how the expert farmers interact with the plants. For example, there was a purple mutation that occurred in one of the expert farmer's fields. He was very curious about it. He took the seeds and grew it off in a corner because he wanted to see what it looked like and tasted like. That's probably how humans domesticated plants, smart people were making smart choices in what to plant and grow," Schaal said.

Many crops grown today have been genetically optimized to consistently give a large yield. Seeds are purchased from a supplier and the plants are all genetically similar.

"Most modern varieties of crops, like corn in the Midwest or high-yield rice in the lowlands of Thailand, are artificial constructs developed by plant breeders. They are extraordinarily important in feeding the world. But they are static and not evolving in farmer's fields," Schaal said.

The rice that the Karen people grow is genetically dynamic, due to natural drift and the farmer's artificial selection. Each year, the farmers choose the seeds that grow best in their fields, which may differ in soil type, elevation, and temperature from other fields, to plant next season. Their crop is constantly evolving in response to local conditions.

"My colleagues believe that those local varieties bred within a village are better than any one single variety could be. Under these circumstances, the farmers have it right," Schaal said.

Although most agriculture in the United States focuses on growing high-yield crops to produce food for people living in cities, landraces of corn and other crops exist in seed banks.

"There is a movement among Native Americans in Arizona to grow ancestral varieties of crops. These varieties are important because they are adapted to hot and dry conditions, something that will become more prevalent as our climate changes," Schaal said.

Time will tell if those farmers "get it right" too.

Gerry Everding | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>