Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing the water for bioenergy crops

30.08.2011
Many energy researchers and environmental advocates are excited about the prospect of gaining more efficient large-scale biofuel production by using large grasses like miscanthus or switchgrass rather than corn. They have investigated yields, land use, economics and more, but one key factor of agriculture has been overlooked: water.

Bioenergy crops, such as switchgrass (front) and miscanthus (rear), have very dense foliage, thus having a different effect on hydrology than traditional agricultural crops. They transpire more water, thereby reducing both soil moisture and runoff. | Photo by Praveen Kumar “While we are looking for solutions for energy through bioenergy crops, dependence on water gets ignored, and water can be a significant limiting factor,” said Praveen Kumar, the Lovell Professor of civil and environmental engineering at the University of Illinois. “There are many countries around the world that are looking into biofuel energy, but if they are adopting these (large grasses) into their regular policy, then they need to take into account the considerations for the associated demand for water.”

Kumar led a study, published this week in the Proceedings of the National Academy of Science Early Edition, detailing effects to the hydrologic cycle of large-scale land conversion, both now and as growing conditions change in the future.

Miscanthus and switchgrass have a very different above-ground foliage structure from corn – more surface area and much denser growth. This is good for maximizing the amount of biomass that an acre of land can produce, but it also increases water use. Miscanthus and switchgrass intercept light and rain differently from corn, and lose more water through transpiration, causing them to pull more water from the soil. The result of large-scale adoption would be a reduction in soil moisture and runoff, but an increase in atmospheric humidity.

“All these together account for the changes in hydrology, just from land-use change,” said Kumar, who also is affiliated with the department of atmospheric sciences. “Then, if you impose further – higher carbon dioxide in the atmosphere, higher temperatures and changes in rainfall patterns – they add further modulation to the water use pattern.”

Kumar’s group used a sophisticated model it developed to study crops’ fine sensitivities to temperature and carbon dioxide changes in the atmosphere. The model incorporates the acclimation response of plants to changing climate.

Using their predictive model, the researchers found that the net water use will increase further as a result of rising temperatures and carbon dioxide. Higher levels of carbon dioxide alone make the plants more water-efficient, since their pores are open less time to absorb carbon dioxide.

However, rising temperatures counteract this effect, as the plants will transpire more while their pores are open, losing more water than they save.

This additional water loss compounds the increase in water usage from land conversion. In the U.S. Midwest, rainfall should remain sufficient to meet water demand, according to Kumar. However, areas that rely on irrigation could find they have less water to meet higher demands, which could increase the net cost of large-scale land conversion and put pressure on already stressed water resources.

“If we’re going to solve energy problems through bioenergy crops, there are collateral issues that need to be considered,” Kumar said. “Water is a significant issue. It’s already a scarce resource across the globe, and the need for it is only going to increase. The cost of that should be factored in to the decision making.”

Graduate student Phong V.V. Le and former postdoctoral researcher Darren Drewry (now at the Max Planck Institute in Germany) were co-authors of the paper.

The National Science Foundation and the Vietnam Education Foundation supported this work.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>