Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tennessee foresters helping to return chestnuts to American forests

28.09.2009
The American chestnut was a dominant species in eastern U.S.'s forests before a blight wiped it out in the early 1900s. Today it's being returned to the landscape thanks in part to work by a University of Tennessee Forestry alumna and the UT Tree Improvement Program (UT TIP).

Once used extensively for building, for tanning leather, as an important source of food for humans and wildlife, and even as nutritious fodder for hogs, the American chestnut seemed destined to be a memory—a line in a Christmas song. In a few years, the public should be able to once again enjoy the benefits of the forest giant.

UT alumna Stacy Clark, lead researcher with the U.S. Forest Service restoration project, believes the chestnut's revival will become one of the great stories of American conservation. Her work in cooperation with The American Chestnut Foundation (TACF) and the UT TIP has resulted in test plantings of blight-resistant trees in three southern National Forests. Planted over the winter, the young trees are 94 percent pure American chestnuts. But the remaining 6 percent has blight resistance derived from the Chinese chestnut tree.

Simply planting a Chinese chestnut wouldn't solve the problem, Clark said.
"The American chestnut grows straight and tall, is highly valuable, and has highly flavored edible nuts," she said. "All that differs from the Chinese. We want the trees to look and act like an American chestnut. But they have to have the resistance genes from Chinese chestnut. That's the only way they're going to survive."

The young trees appear healthy and are growing well, but results from tree experiments come slowly, even for a fast-growth tree like the chestnut.

"We'll know in about five years whether or not the trees will be successful in early establishment," she said. "In 10 to 15 years we will know about blight resistance. It takes 10 to 15 years to get significant mast and another 15 years to get harvestable wood."

Making the resistant tree available to the public will take longer still.

"These plantings are not the final answer. We need several more experiments to really test the Foundation's breeding lines and blight resistance."

TACF, which provided the hybrid stock, has produced multiple lines of blight-resistant seedlings. In 2010, partners will plant an additional 900 to 1,000 seedlings of the American chestnut in national forests in Tennessee and Virginia. Plantings will include all generations of the American chestnut—approximately 700 will be blight-resistant.

"We really want to test which are the best families. All that will take many, many years. I'll be retired, probably, before that is done."

Clark works closely with Dr. Scott Schlarbaum, director of UT's 50-year-old Tree Improvement Program. UT TIP provided the necessary infrastructure for the Forestry Service to implement nursery and field studies of chestnut material. UT TIP has provided technical assistance to develop the experimental designs for testing, and they will assist the Forest Service in monitoring the research. They have also provided an avenue for partnerships with state forestry divisions for nursery research.

"Keeping track of the genetic identity of a tree from nursery into the field is a tremendous task," Clark said. "UT has a well-developed program in hardwood seedling restoration. We can tap into that expertise."

Though her work will help re-establish a tree with significant forest and economic potential for Tennessee and other southern states, the long-term influence will go much further.

"The biggest impact is to provide a road map for other species. Many trees have exotic pest concerns. This project provides hope for those other species. If we are successful, this will be one of the greatest triumphs in the history of forest conservation."

Contacts:

Dr. Scott Schlarbaum, UT Department of Forestry, Wildlife and Fisheries, 865-974-7993

Margot Emery, UTIA Marketing & Communications Services, 865-974-7141, memery@tennessee.edu

Margot Emery | EurekAlert!
Further information:
http://www.tennessee.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>