Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tennessee foresters helping to return chestnuts to American forests

28.09.2009
The American chestnut was a dominant species in eastern U.S.'s forests before a blight wiped it out in the early 1900s. Today it's being returned to the landscape thanks in part to work by a University of Tennessee Forestry alumna and the UT Tree Improvement Program (UT TIP).

Once used extensively for building, for tanning leather, as an important source of food for humans and wildlife, and even as nutritious fodder for hogs, the American chestnut seemed destined to be a memory—a line in a Christmas song. In a few years, the public should be able to once again enjoy the benefits of the forest giant.

UT alumna Stacy Clark, lead researcher with the U.S. Forest Service restoration project, believes the chestnut's revival will become one of the great stories of American conservation. Her work in cooperation with The American Chestnut Foundation (TACF) and the UT TIP has resulted in test plantings of blight-resistant trees in three southern National Forests. Planted over the winter, the young trees are 94 percent pure American chestnuts. But the remaining 6 percent has blight resistance derived from the Chinese chestnut tree.

Simply planting a Chinese chestnut wouldn't solve the problem, Clark said.
"The American chestnut grows straight and tall, is highly valuable, and has highly flavored edible nuts," she said. "All that differs from the Chinese. We want the trees to look and act like an American chestnut. But they have to have the resistance genes from Chinese chestnut. That's the only way they're going to survive."

The young trees appear healthy and are growing well, but results from tree experiments come slowly, even for a fast-growth tree like the chestnut.

"We'll know in about five years whether or not the trees will be successful in early establishment," she said. "In 10 to 15 years we will know about blight resistance. It takes 10 to 15 years to get significant mast and another 15 years to get harvestable wood."

Making the resistant tree available to the public will take longer still.

"These plantings are not the final answer. We need several more experiments to really test the Foundation's breeding lines and blight resistance."

TACF, which provided the hybrid stock, has produced multiple lines of blight-resistant seedlings. In 2010, partners will plant an additional 900 to 1,000 seedlings of the American chestnut in national forests in Tennessee and Virginia. Plantings will include all generations of the American chestnut—approximately 700 will be blight-resistant.

"We really want to test which are the best families. All that will take many, many years. I'll be retired, probably, before that is done."

Clark works closely with Dr. Scott Schlarbaum, director of UT's 50-year-old Tree Improvement Program. UT TIP provided the necessary infrastructure for the Forestry Service to implement nursery and field studies of chestnut material. UT TIP has provided technical assistance to develop the experimental designs for testing, and they will assist the Forest Service in monitoring the research. They have also provided an avenue for partnerships with state forestry divisions for nursery research.

"Keeping track of the genetic identity of a tree from nursery into the field is a tremendous task," Clark said. "UT has a well-developed program in hardwood seedling restoration. We can tap into that expertise."

Though her work will help re-establish a tree with significant forest and economic potential for Tennessee and other southern states, the long-term influence will go much further.

"The biggest impact is to provide a road map for other species. Many trees have exotic pest concerns. This project provides hope for those other species. If we are successful, this will be one of the greatest triumphs in the history of forest conservation."

Contacts:

Dr. Scott Schlarbaum, UT Department of Forestry, Wildlife and Fisheries, 865-974-7993

Margot Emery, UTIA Marketing & Communications Services, 865-974-7141, memery@tennessee.edu

Margot Emery | EurekAlert!
Further information:
http://www.tennessee.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>