Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology protects cotton from caterpillar’s appetite

02.02.2011
The furry-looking insects start their development smaller than the head of a pin, but the caterpillars soon develop an appetite for cotton as big as the crop.

To demonstrate the insects’ destructive power, Clemson University entomologist Jeremy Greene planted two cotton varieties — one genetically modified to provide protection from caterpillars, one not — in a demonstration field at the Edisto Research and Education Center.

The non-protected cotton was planted in a pattern that spelled the word “Tigers.” Aerial photographs taken near harvest show that while the genetically modified crop survived intact, the unprotected plants provided three square meals a day for the crop-hungry herbivores.

The demonstration crop was planted in late May last year and grew through the summer.

“We wanted to show the kind of damage caterpillars can do when they’re allowed to eat unprotected cotton freely,” Greene said.

Cotton is a multimillion dollar crop in the Palmetto State involving hundreds of farms and thousands of jobs.

Nearly all cotton varieties planted in South Carolina contain genes found in the naturally occurring Bacillus thuringiensis, or Bt, that help the plant make its own insecticide.

Bt cotton is genetically modified with specific genes from Bacillus thuringiensis. Think of it as in-plant insecticide, Greene said. This technology has been commercially available since 1996, but improvements over the years have enhanced the control of major pests.

The plant makes the proteins just like the bacterium does. The particular strain of Bacillus thuringiensis available in cotton, which was planted for the demonstration, works only on immature lepidopterans, or caterpillars. Lepidoptera is the insect order for moths and butterflies. The toxic proteins have no ill effects on other organisms.

“During 2010, we had a very high population of bollworm that infested cotton acres at the Edisto research center,” Greene said. “We planted a non-Bt variety where you see the word 'Tigers' and a two-gene Bt cotton where you see the fluffy white cotton lint.”

The striking difference in appearance is due to bollworms eating all of the green cotton bolls in the non-Bt variety that did not have protection from the insects.

Greene applied no insecticides to control caterpillars in this field, so the difference between the Bt and non-Bt varieties is illustrated clearly.

A color-coded yield map, produced by precision agriculture specialist Will Henderson at the Edisto center, illustrates the crop after harvest using one of the center’s pickers that is equipped with a yield monitor. The map shows “good” yields in green and “bad” yields in red.

The damage potential of important lepidopteran species, such as bollworm, is not new, Greene said. Moths have flown into fields, laid eggs and hatched as injurious caterpillars for decades.

Transgenic Bt technology and its improvement over the years are relatively recent advances that represent effective, economical and environmentally friendly control of these insects in agriculture, he said.

“We know what they can do to non-Bt cotton versus Bt cotton — the photographs speak for themselves,” Greene said.

Jeremy Greene | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>