Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Technology Could Produce Biofuel for Around €0.50 a Litre

29.01.2009
A novel technology for synthesising chemicals from plant material could produce liquid fuel for just over €0.50 a litre, say German scientists. But only if the infrastructure is set up in the right way, states the research published in this month’s issue of Biofuels, Bioproducts & Biorefining.

Developed by scientists at the Karlsruhe Institute of Technology (KIT), this novel technology is known as bioliq, and is able to produce a range of different types of liquid fuel and chemicals from plant material such as wood and straw.

Bioliq involves first heating the plant material in the absence of air to around 500°C, a process known as pyrolysis. This produces a thick oily liquid containing solid particles of coke termed biosyncrude.

The biosyncrude is then vaporised by exposing it to a stream of oxygen gas, before being heated at high pressures to a temperature of around 1400°C. Known as gasification, this process transforms the liquid biosyncrude into a mixture of carbon monoxide and hydrogen termed syngas.

After any impurities are removed from this syngas, it can be catalytically converted into a range of different chemicals and fuels, including methanol, hydrogen and a synthetic version of diesel. This stage of the technology is fairly well developed, as syngas derived from coal and natural gas is already used to produce liquid fuels on a commercial scale in South Africa.

Bioliq is now taking its first steps towards commercialisation. In conjunction with the German process engineering company Lurgi, KIT is starting to construct a pilot plant based on the bioliq technology, which should be fully completed in 2012. Providing the technology works at this scale, the question then will be how best to implement bioliq at a larger scale, so that it can effectively compete with fossil fuels.

To try to come up with an answer, a team of KIT scientists led by Nicolaus Dahmen has used a simple economic model to calculate the cost of producing fuel at a bioliq plant with an annual production capacity of around 1 million tonnes. This is around a tenth of the size of a modern oil refinery, but is a similar size to refineries that produce liquid fuel from oil and gas.

Dahmen and his colleagues quickly realised that incorporating both the pyrolysis and gasification steps at this central plant wouldn’t work, because of the problems and expense involved in transporting sufficient quantities of bulky straw and wood to the plant. They estimated that if sufficient plant material was transported on trucks, it would quickly bring the road network around the plant to a halt.

So they came up with an alternative set-up. “Biomass is pre-treated in around 50 regionally distributed pyrolysis plants to produce the biosyncrude,” explains Dahmen. “This can then be transported economically over long distances to supply a central fuel production plant with a high capacity.”

The advantage of this set-up is that it is much cheaper and more convenient to transport liquid biosyncrude than bulky wood and straw. This is especially the case if the biosyncrude is transported by rail, which is the most cost effective way to transport material over long distances.

So Dahmen and his colleagues produced an economic model based on this set-up, which suggests that the bioliq technology can potentially produce liquid fuels for €0.56–1.04 a litre. This would still make the fuel more expensive than conventional petrol or diesel, but this difference could be greatly reduced if different levels of tax were applied to the fuels.

Jennifer Beal | alfa
Further information:
http://www3.interscience.wiley.com/journal/121624305/abstract
http://interscience.wiley.com

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>