Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel Technology Could Produce Biofuel for Around €0.50 a Litre

A novel technology for synthesising chemicals from plant material could produce liquid fuel for just over €0.50 a litre, say German scientists. But only if the infrastructure is set up in the right way, states the research published in this month’s issue of Biofuels, Bioproducts & Biorefining.

Developed by scientists at the Karlsruhe Institute of Technology (KIT), this novel technology is known as bioliq, and is able to produce a range of different types of liquid fuel and chemicals from plant material such as wood and straw.

Bioliq involves first heating the plant material in the absence of air to around 500°C, a process known as pyrolysis. This produces a thick oily liquid containing solid particles of coke termed biosyncrude.

The biosyncrude is then vaporised by exposing it to a stream of oxygen gas, before being heated at high pressures to a temperature of around 1400°C. Known as gasification, this process transforms the liquid biosyncrude into a mixture of carbon monoxide and hydrogen termed syngas.

After any impurities are removed from this syngas, it can be catalytically converted into a range of different chemicals and fuels, including methanol, hydrogen and a synthetic version of diesel. This stage of the technology is fairly well developed, as syngas derived from coal and natural gas is already used to produce liquid fuels on a commercial scale in South Africa.

Bioliq is now taking its first steps towards commercialisation. In conjunction with the German process engineering company Lurgi, KIT is starting to construct a pilot plant based on the bioliq technology, which should be fully completed in 2012. Providing the technology works at this scale, the question then will be how best to implement bioliq at a larger scale, so that it can effectively compete with fossil fuels.

To try to come up with an answer, a team of KIT scientists led by Nicolaus Dahmen has used a simple economic model to calculate the cost of producing fuel at a bioliq plant with an annual production capacity of around 1 million tonnes. This is around a tenth of the size of a modern oil refinery, but is a similar size to refineries that produce liquid fuel from oil and gas.

Dahmen and his colleagues quickly realised that incorporating both the pyrolysis and gasification steps at this central plant wouldn’t work, because of the problems and expense involved in transporting sufficient quantities of bulky straw and wood to the plant. They estimated that if sufficient plant material was transported on trucks, it would quickly bring the road network around the plant to a halt.

So they came up with an alternative set-up. “Biomass is pre-treated in around 50 regionally distributed pyrolysis plants to produce the biosyncrude,” explains Dahmen. “This can then be transported economically over long distances to supply a central fuel production plant with a high capacity.”

The advantage of this set-up is that it is much cheaper and more convenient to transport liquid biosyncrude than bulky wood and straw. This is especially the case if the biosyncrude is transported by rail, which is the most cost effective way to transport material over long distances.

So Dahmen and his colleagues produced an economic model based on this set-up, which suggests that the bioliq technology can potentially produce liquid fuels for €0.56–1.04 a litre. This would still make the fuel more expensive than conventional petrol or diesel, but this difference could be greatly reduced if different levels of tax were applied to the fuels.

Jennifer Beal | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>