Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology identified could reduce the spread of rice virus

12.02.2009
Discovery could lead to better rice yields

Building on plant virus research started more than 20 years ago, a biologist at Washington University in St. Louis and his colleague at the Donald Danforth Plant Science Center in St. Louis have discovered a technology that reduces infection by the virus that causes Rice Tungro Disease, a serious limiting factor for rice production in Asia.

Roger N. Beachy, Ph.D., WUSTL professor of biology in Arts & Sciences and president of the Donald Danforth Plant Science Center, and Danforth Center research scientist Shunhong Dai, Ph.D., demonstrated that transgenic rice plants that overexpress either of two rice proteins are tolerant to infection caused by the rice tungro bacilliform virus (RTVB), which is largely responsible for the symptoms associated with Rice Tungro disease.

The two proteins, RF2a and RF2b, were discovered in Beachy's lab several years ago and are transcription factors known to be important for plant development; the new data suggest that they may be involved in regulating defense mechanisms that protect against virus infection. The discovery, published in the December 22, 2008, issue of the Proceedings of the National Academy of Sciences, may open new avenues in the search for disease resistance genes and pathways in plants and other organisms.

Plant viral diseases cause serious economic losses in agriculture, second only to those caused by fungal diseases. Rice Tungro disease is prevalent primarily in south and southeast Asia and accounts for nearly $1.5 billion annual loss in rice production worldwide. Preventing the occurrence and spread of this virus could result in increased yields ranging from five to 10 percent annually in affected areas.

"Rice Tungro disease is complex and requires interactions between two different viruses, an insect vector and the host. It has taken a great deal of research effort through the years to gain sufficient information and knowledge about the virus and the host to come to the point of developing a type of resistance to the disease. Hopefully, the results of these studies will lead to improved yields of rice in areas of the world most affected by the disease," said Beachy.

Beachy and Dai's research laboratory and greenhouse findings conducted in St. Louis were confirmed in a greenhouse trial conducted in partnership with the Philippine Rice Research Institute. This breakthrough provides a clearer understanding of how these two specific transcription factors 'turn on' specific genes in rice plants as well as which proteins help the virus complete the cycle of infection. Understanding the development of disease symptoms is critical for engineering plants that can resist the biological effects of viral pathogen infection.

Virus infections alter gene expression and physiological status in the host, resulting in disease symptoms. Although viruses are relatively simple genetically speaking, little is known about the mechanisms that underlie the development of disease symptoms caused by viral pathogens.

A major challenge for the treatment or prevention of viral infections is the identification of specific factors in host organisms that contribute to disease susceptibility and symptoms. Some of these factors include genetic and biochemical pathways and gene expression that influence multiple aspects of host biology.

In this case of Rice Tungro disease, viral infection is commonly transmitted by the green leafhopper. Combining genes that overexpress RF2a and RF2b with genes that provide resistance to the insect vector could generate new rice varieties with significantly improved resistance to Rice Tungro disease in vulnerable regions in the world.

Karla R. Goldstein | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>