Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies advance livestock genomics for agricultural and biomedical uses

02.10.2012
New genome editing technologies developed at the University of Minnesota for use on livestock will allow scientists to learn more about human diseases.


The genomic technique, known as TALENS, is described in a report published today in the scientific journal Proceedings of the National Academy of Science. The technique is cheaper and faster than previous technologies that allow scientists to genetically modify livestock animals; the animals are used to learn more about human diseases, which in turn can help researchers develop cures. U of M scientists and their collaborators used the technique to develop a swine model of cardiovascular disease in the diabetes-prone Ossabaw miniature pig.



The TALENS technique also can be used in agriculture, the paper notes, allowing livestock breeders to encourage or discourage a particular trait. 


“Our efforts continue a long tradition of responsible animal breeding and research for the betterment of mankind,” said Scott Fahrenkrug, an associate professor of animal science at the university and lead author of the PNAS paper. 



Collaborators on the paper are from Texas A&M, the Roslin Institute at the University of Edinburgh and Recombinetics, a Twin Cities-based company created in 2009 to commercialize the techniques created at the University of Minnesota. The group’s work and the TALENS technique also recently were highlighted in the journal Nature. 


“This work embodies the effective translation of university research into meaningful applications that support Minnesota business,” Fahrenkrug said. “We are proud to produce positive social and economic outcomes.”

Media Note: The full paper is available online at http://www.pnas.org/.

Contacts: Becky Beyers, College of Food, Agricultural and Natural Resource Sciences, bbeyers@umn.edu, (612) 626-5754

Matt Hodson, University News Service, mjhodson@umn.edu, (612) 625-0552

Becky Beyers | EurekAlert!
Further information:
http://www.umn.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>