Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team shows how the honey bee tolerates some synthetic pesticides

21.07.2011
A new study reveals how enzymes in the honey bee gut detoxify pesticides commonly used to kill mites in the honey bee hive. This is the first study to tease out the precise molecular mechanisms that allow a pollinating insect to tolerate exposure to these potentially deadly compounds.
The findings appear in the Proceedings of the National Academy of Sciences.
Previous studies have shown that honey bee hives are contaminated with an array of agricultural chemicals, many of which the bees themselves bring back to the hive in the form of contaminated pollen and nectar, said University of Illinois entomology professor and department head May Berenbaum, who led the new research.

“There are agricultural pesticides everywhere,” she said. “They accumulate in the wax of bee hives, so bees in particular are exposed. And their habit of foraging very broadly across a staggering diversity of plant species also tends to expose them to many different types of habitats, which may also have different types of chemical residues.”

Other chemicals are applied directly to the hives, she said. For the past 20 years, beekeepers have used acaricides – chemicals designed to kill mites but not bees – in the hive.

While evidence so far does not support the idea that exposure to synthetic pesticides is a cause or significant contributor to colony collapse disorder, the massive die-off of honey bees first reported in late 2006, “it’s abundantly clear that pesticides aren’t really very good for any insect,” Berenbaum said. “So we figured it was about time somebody knew something about how pollinators process toxins.”

The researchers focused on cytochrome P450s, enzymes that are well-known agents of detoxification “in most air-breathing organisms,” Berenbaum said. Other studies had shown that cytochrome P450s in honey bees play a key role in their tolerance of pyrethroid pesticides, such as tau-fluvalinate, which is used to kill mites in the hive. But no previous study had identified specific cytochrome P450s in bees or in other pollinating insects that contribute to pyrethroid tolerance, Berenbaum said.

In a series of experiments, the team identified three cytochrome P450s in the honey bee midgut that metabolize tau-fluvalinate. They discovered that these enzymes also detoxify coumaphos, a structurally different organophosphate pesticide that also is used to kill mites in bee hives.

“This suggests that these honey bee cytochrome P450s are not particularly specialized,” Berenbaum said. “That raises the possibility that a nontoxic dose of tau-fluvalinate may become toxic if an enzyme that is principally involved in its detoxification is otherwise occupied with a different chemical.”

The evidence also suggests that honey bees were “pre-adapted” to detoxify pyrethroid pesticides, Berenbaum said. Pyrethroids are similar in structure to naturally occurring defensive compounds, called pyrethrins, produced by some flowering plants. Honey bees have likely had a long history of contact with pyrethrins, which are found even in some flowers in the daisy family. It appears that the same enzymes that helped the honey bees detoxify the pyrethrins in nature may also help them tolerate this relatively new pesticide exposure.

The new findings should enhance efforts to develop mite control methods that are even less toxic to bees, Berenbaum said.

Also on the study team were U. of I. cell and developmental biology professor Mary Schuler and postdoctoral researcher Wenfu Mao.

Editor’s notes: To reach May Berenbaum,
call 217- 333-7784; email maybe@illinois.edu.
The paper, “CYTP9Q-Mediated Detoxification of Acaricides in the Honey Bee (Apis mellifera),” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Berenbaum cytochrome P450 flowering plant honey bees

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>