Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team shows how the honey bee tolerates some synthetic pesticides

21.07.2011
A new study reveals how enzymes in the honey bee gut detoxify pesticides commonly used to kill mites in the honey bee hive. This is the first study to tease out the precise molecular mechanisms that allow a pollinating insect to tolerate exposure to these potentially deadly compounds.
The findings appear in the Proceedings of the National Academy of Sciences.
Previous studies have shown that honey bee hives are contaminated with an array of agricultural chemicals, many of which the bees themselves bring back to the hive in the form of contaminated pollen and nectar, said University of Illinois entomology professor and department head May Berenbaum, who led the new research.

“There are agricultural pesticides everywhere,” she said. “They accumulate in the wax of bee hives, so bees in particular are exposed. And their habit of foraging very broadly across a staggering diversity of plant species also tends to expose them to many different types of habitats, which may also have different types of chemical residues.”

Other chemicals are applied directly to the hives, she said. For the past 20 years, beekeepers have used acaricides – chemicals designed to kill mites but not bees – in the hive.

While evidence so far does not support the idea that exposure to synthetic pesticides is a cause or significant contributor to colony collapse disorder, the massive die-off of honey bees first reported in late 2006, “it’s abundantly clear that pesticides aren’t really very good for any insect,” Berenbaum said. “So we figured it was about time somebody knew something about how pollinators process toxins.”

The researchers focused on cytochrome P450s, enzymes that are well-known agents of detoxification “in most air-breathing organisms,” Berenbaum said. Other studies had shown that cytochrome P450s in honey bees play a key role in their tolerance of pyrethroid pesticides, such as tau-fluvalinate, which is used to kill mites in the hive. But no previous study had identified specific cytochrome P450s in bees or in other pollinating insects that contribute to pyrethroid tolerance, Berenbaum said.

In a series of experiments, the team identified three cytochrome P450s in the honey bee midgut that metabolize tau-fluvalinate. They discovered that these enzymes also detoxify coumaphos, a structurally different organophosphate pesticide that also is used to kill mites in bee hives.

“This suggests that these honey bee cytochrome P450s are not particularly specialized,” Berenbaum said. “That raises the possibility that a nontoxic dose of tau-fluvalinate may become toxic if an enzyme that is principally involved in its detoxification is otherwise occupied with a different chemical.”

The evidence also suggests that honey bees were “pre-adapted” to detoxify pyrethroid pesticides, Berenbaum said. Pyrethroids are similar in structure to naturally occurring defensive compounds, called pyrethrins, produced by some flowering plants. Honey bees have likely had a long history of contact with pyrethrins, which are found even in some flowers in the daisy family. It appears that the same enzymes that helped the honey bees detoxify the pyrethrins in nature may also help them tolerate this relatively new pesticide exposure.

The new findings should enhance efforts to develop mite control methods that are even less toxic to bees, Berenbaum said.

Also on the study team were U. of I. cell and developmental biology professor Mary Schuler and postdoctoral researcher Wenfu Mao.

Editor’s notes: To reach May Berenbaum,
call 217- 333-7784; email maybe@illinois.edu.
The paper, “CYTP9Q-Mediated Detoxification of Acaricides in the Honey Bee (Apis mellifera),” is available online or from the U. of I. News Bureau.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Berenbaum cytochrome P450 flowering plant honey bees

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>