Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team of scientists predicts continued death of forests in southwestern US due to climate change

14.12.2010
If current climate projections hold true, the forests of the Southwestern United States face a bleak future, with more severe –– and more frequent –– forest fires, higher tree death rates, more insect infestation, and weaker trees. The findings by university and government scientists are published in this week's issue of the Proceedings of the National Academy of Sciences (PNAS).

"Our study shows that regardless of rainfall going up or down, forests in the Southwest U.S. are very sensitive to temperature –– in fact, more sensitive than any forests in the country," said first author Park Williams, postdoctoral researcher in the Department of Geography at UC Santa Barbara. "Forests in the Southwest are most sensitive to higher temperatures in the spring and summer, and those are the months that have been warming the fastest in this area."

Past forest studies have shown that warmer temperatures are associated with wildfires and bark beetle outbreaks. "We found that up to 18 percent of forest area in the Southwest –– millions of acres –– has experienced mortality due to severe wildfires and bark beetle outbreaks in the last 20 years," said Williams.

Co-author Joel Michaelsen, a professor of geography at UCSB, said: "In order to carry out this research project, Park Williams assembled a very comprehensive data set of over 1,000 tree ring chronologies from all across the United States." Michaelsen is a dendroclimatologist –– a scientist who studies climate using analysis of tree rings.

"Instead of using the chronologies to reconstruct past climate patterns, as is usually done in dendroclimatic work, the relationships between growth and climate were used to study possible impacts of future climate change on forest health," said Michaelsen. "One noteworthy finding was that tree growth throughout the Southwestern U.S., while quite sensitive to precipitation variations, is also negatively impacted by warmer temperatures. This is an important result, because predictions of future warming in the region are considerably more certain than any predictions of precipitation change."

Researchers found that historic patterns of vegetation change, insect outbreaks, fire activity, runoff, and erosion dynamics show that landscapes often respond gradually to incremental changes in climate and land-use stressors until a threshold is reached, at which time there may be dramatic landscape changes, such as tree die-offs or episodes of broad-scale fire or erosion. They also found that the stressors that contribute to tree mortality tipping points can develop over landscape and even sub-continental scales.

Co-author Christopher Still, an associate professor of geography at UCSB, said: "These predicted large-scale changes in forest cover and composition (i.e., types of tree species present) will have large implications for everything from snowpack and the river flows that our society depends on, to the intensity and frequency of fires, to the visual appearance of these landscapes that drives much of the tourism in this region."

Added co-author Craig D. Allen of the U.S. Geological Survey: "Such big, fast changes in Southwest forest vegetation could have significant effects on a wide range of ecosystem goods and services, from watershed protection and timber supplies to biodiversity and recreation. These emerging vulnerabilities present increasingly clear challenges for managers of southwestern forests to develop strategies to mitigate or adapt to the coming changes, in order to sustain these forested ecosystems and their benefits into the future."

Forests help retain rainwater and keep it from flowing down mountains immediately, noted Williams in explaining the importance of forests to landscapes and rivers. "When forests disappear," he said, "water runs downhill more quickly and takes the upper layers of soil with it."

According to Williams, the erosion makes it harder for future generations of trees to establish themselves and makes it more difficult for people to capture storm water as it flows from the mountains. In addition, erosion increases the amount of sediment flowing in rivers and settling in lakes, and causes water to remain in the forest long after the rain.

The paper also points to the many implications of these changes for future management and use of Southwest forests.

The scientific article is part of a special PNAS feature edition called "Climate Change and Water in Southwestern North America."

Note to editors: Park Williams is available by e-mail at williams@geog.ucsb.edu. Christopher Still is available at (805) 450-3070, or by e-mail at cstill@geog.ucsb.edu. For downloadable images see: http://www.ia.ucsb.edu/pa/display.aspx?pkey=2387

The American Geophysical Union (AGU) will hold a press conference on these findings at 5 p.m. today at the Moscone West Building, room 300, in San Francisco. Park Williams and other scientists will present results. To register for the press conference, please contact The AGU at agupressconfs@gmail.com.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>