Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tapping into sorghum's weed-fighting capabilities to give growers more options

16.06.2010
By unlocking the genetic secrets of sorghum, Agricultural Research Service (ARS) scientists have found a way to make one of the world's most important cereal crops a better option for growers. Researchers at the ARS Natural Products Utilization Unit in Oxford, Miss. also may have opened a door to reducing pesticide use in the production of other crops.

Sorghum secretes a compound known as sorgoleone that is instrumental in helping the plant combat weeds. But in a way it does its job too well. Certain crops don't grow well in fields where sorghum has been raised, causing problems for growers who want to plant different crops on those fields.

The research team at Oxford included molecular biologist Scott Baerson, chemist Agnes Rimando, research leader Stephen O. Duke, plant physiologist Franck E. Dayan, molecular biologist Zhiqiang Pan, and plant physiologist Daniel Cook, who now works at the ARS Poisonous Plant Research Laboratory in Logan, Utah.

The team started with two pieces of evidence that helped them address the problem. Previous studies showed that sorgoleone is produced in the plant root hairs, and that a special type of enzyme within the plant plays a major role in sorgoleone production.

Using a strategy called sequence tagging, the scientists searched an established sorghum genome database for gene sequences associated with that class of enzymes. They found two gene sequences expressed in the plant root hair cells that produced the enzymes. When they silenced the two gene sequences, it dramatically reduced sorgoleone levels in the sorghum plants produced.

The results, published in The Plant Cell, could lead to sorghum lines without the soil toxicity problem, as well as lines with higher levels of sorgoleone that offer superior weed-fighting capabilities without posing environmental hazards.

This discovery will enable researchers to look for similar gene sequences in other crops to increase their natural pest-fighting capabilities and reduce the need for pesticides. Baerson and his colleagues have already identified similar sequences in rice that are involved in production of defense-related enzymes.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). This research supports the USDA priority of promoting international food security.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Dennis O'Brien | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>