Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking Plant Biology from the Classroom to the Internet

29.04.2009
A new article assesses the effectiveness of a new online course in the Plant Biology Department at Arizona State University, which was designed as a way for non-majors to fulfill their natural science requirement. The course, which students rated very highly, features written and animated materials to teach topics such as plant growth and their contribution to the biosphere.

Over the past decade, the use of online courses in post-secondary education has gone from an experiment to an all out explosion, as institutions look at new ways to engage their students.

Studies have shown these courses can have positive effects on students’ learning, problem-solving skills, and critical-thinking skills. Recently, a partnership between instructors in the Plant Biology Department and multimedia designers at Arizona State University has developed an extensive website designed for a course in plant biology.

As a fulfillment of the natural science requirement at Arizona State University, this internet-based biology course for nonmajors, called Concepts in Plant Biology, helps students explore how plants live, grow, and reproduce; plant diversity; plants’ contribution to the biosphere; and their relevance to human life. An evaluation has been published in the Journal of Natural Resources and Life Sciences Education.

The objectives of the course are to provide an introduction to the fundamental behavior of matter and energy as related to plants and their role in the biosphere, as well as to teach students how plants function and how they can be utilized to address global problems such as hunger, pollution, and global warming. An asynchronous strategy towards teaching was developed to meet the needs of students who were reluctant to enroll, either due to scheduling constraints or a more general intimidation of science curriculum.

The course creation was divided into two stages: an 18-month long planning phase followed by a 12-month design and development phase. During the planning phase, the creation of a website with multimedia learning modules was selected due to its flexibility, the ability to track data on student usage, and the ability to update. Faculty served as the supervisors for the design phase of the project. They were responsible for the course outline and written content, and also identified concepts to be animated.

A diversity of programs was utilized to create the website content. These included Flash animations to illustrate processes such as the carbon cycle, global warming, and how enzymes work; Director-Shockwave drag-and-drop exercises to engage students in the discovery process, as well as to test their understanding; and QuickTime videos, which were used in multiple ways, including demonstrating cellular activity, and illustrating plant growth through time-lapsed photography. At the end of the design and development phase of the project, an instructional website was created with 259 content pages, including 237 illustrations and images, 124 interactive animations and 11 videos.

The lecture content was transformed from a traditional on-campus lecture to a distance education website for use both as a stand-alone course and as an adjunct to the on-campus course. A total of 109 students surveyed in three separate years rated the course on a scale of 1 to 5, with 1 being very poor and 5 being very good, and the mean score as a whole was 4.16. Ninety-eight percent of the students said they would take another online course.

Several difficulties were encountered in the implementation of the web course. Some students had difficulty down-loading the large file sizes of audio and video components, as no minimum specifications for computer hardware, software, and internet access speed were required for students to enroll. In addition, obtaining funding to edit and improve the site has been difficult, which is an essential component of the interactive tools provided by the site.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/pdf/2009/E08-0003n.pdf. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>