Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking Plant Biology from the Classroom to the Internet

29.04.2009
A new article assesses the effectiveness of a new online course in the Plant Biology Department at Arizona State University, which was designed as a way for non-majors to fulfill their natural science requirement. The course, which students rated very highly, features written and animated materials to teach topics such as plant growth and their contribution to the biosphere.

Over the past decade, the use of online courses in post-secondary education has gone from an experiment to an all out explosion, as institutions look at new ways to engage their students.

Studies have shown these courses can have positive effects on students’ learning, problem-solving skills, and critical-thinking skills. Recently, a partnership between instructors in the Plant Biology Department and multimedia designers at Arizona State University has developed an extensive website designed for a course in plant biology.

As a fulfillment of the natural science requirement at Arizona State University, this internet-based biology course for nonmajors, called Concepts in Plant Biology, helps students explore how plants live, grow, and reproduce; plant diversity; plants’ contribution to the biosphere; and their relevance to human life. An evaluation has been published in the Journal of Natural Resources and Life Sciences Education.

The objectives of the course are to provide an introduction to the fundamental behavior of matter and energy as related to plants and their role in the biosphere, as well as to teach students how plants function and how they can be utilized to address global problems such as hunger, pollution, and global warming. An asynchronous strategy towards teaching was developed to meet the needs of students who were reluctant to enroll, either due to scheduling constraints or a more general intimidation of science curriculum.

The course creation was divided into two stages: an 18-month long planning phase followed by a 12-month design and development phase. During the planning phase, the creation of a website with multimedia learning modules was selected due to its flexibility, the ability to track data on student usage, and the ability to update. Faculty served as the supervisors for the design phase of the project. They were responsible for the course outline and written content, and also identified concepts to be animated.

A diversity of programs was utilized to create the website content. These included Flash animations to illustrate processes such as the carbon cycle, global warming, and how enzymes work; Director-Shockwave drag-and-drop exercises to engage students in the discovery process, as well as to test their understanding; and QuickTime videos, which were used in multiple ways, including demonstrating cellular activity, and illustrating plant growth through time-lapsed photography. At the end of the design and development phase of the project, an instructional website was created with 259 content pages, including 237 illustrations and images, 124 interactive animations and 11 videos.

The lecture content was transformed from a traditional on-campus lecture to a distance education website for use both as a stand-alone course and as an adjunct to the on-campus course. A total of 109 students surveyed in three separate years rated the course on a scale of 1 to 5, with 1 being very poor and 5 being very good, and the mean score as a whole was 4.16. Ninety-eight percent of the students said they would take another online course.

Several difficulties were encountered in the implementation of the web course. Some students had difficulty down-loading the large file sizes of audio and video components, as no minimum specifications for computer hardware, software, and internet access speed were required for students to enroll. In addition, obtaining funding to edit and improve the site has been difficult, which is an essential component of the interactive tools provided by the site.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/pdf/2009/E08-0003n.pdf. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>