Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking Plant Biology from the Classroom to the Internet

29.04.2009
A new article assesses the effectiveness of a new online course in the Plant Biology Department at Arizona State University, which was designed as a way for non-majors to fulfill their natural science requirement. The course, which students rated very highly, features written and animated materials to teach topics such as plant growth and their contribution to the biosphere.

Over the past decade, the use of online courses in post-secondary education has gone from an experiment to an all out explosion, as institutions look at new ways to engage their students.

Studies have shown these courses can have positive effects on students’ learning, problem-solving skills, and critical-thinking skills. Recently, a partnership between instructors in the Plant Biology Department and multimedia designers at Arizona State University has developed an extensive website designed for a course in plant biology.

As a fulfillment of the natural science requirement at Arizona State University, this internet-based biology course for nonmajors, called Concepts in Plant Biology, helps students explore how plants live, grow, and reproduce; plant diversity; plants’ contribution to the biosphere; and their relevance to human life. An evaluation has been published in the Journal of Natural Resources and Life Sciences Education.

The objectives of the course are to provide an introduction to the fundamental behavior of matter and energy as related to plants and their role in the biosphere, as well as to teach students how plants function and how they can be utilized to address global problems such as hunger, pollution, and global warming. An asynchronous strategy towards teaching was developed to meet the needs of students who were reluctant to enroll, either due to scheduling constraints or a more general intimidation of science curriculum.

The course creation was divided into two stages: an 18-month long planning phase followed by a 12-month design and development phase. During the planning phase, the creation of a website with multimedia learning modules was selected due to its flexibility, the ability to track data on student usage, and the ability to update. Faculty served as the supervisors for the design phase of the project. They were responsible for the course outline and written content, and also identified concepts to be animated.

A diversity of programs was utilized to create the website content. These included Flash animations to illustrate processes such as the carbon cycle, global warming, and how enzymes work; Director-Shockwave drag-and-drop exercises to engage students in the discovery process, as well as to test their understanding; and QuickTime videos, which were used in multiple ways, including demonstrating cellular activity, and illustrating plant growth through time-lapsed photography. At the end of the design and development phase of the project, an instructional website was created with 259 content pages, including 237 illustrations and images, 124 interactive animations and 11 videos.

The lecture content was transformed from a traditional on-campus lecture to a distance education website for use both as a stand-alone course and as an adjunct to the on-campus course. A total of 109 students surveyed in three separate years rated the course on a scale of 1 to 5, with 1 being very poor and 5 being very good, and the mean score as a whole was 4.16. Ninety-eight percent of the students said they would take another online course.

Several difficulties were encountered in the implementation of the web course. Some students had difficulty down-loading the large file sizes of audio and video components, as no minimum specifications for computer hardware, software, and internet access speed were required for students to enroll. In addition, obtaining funding to edit and improve the site has been difficult, which is an essential component of the interactive tools provided by the site.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/pdf/2009/E08-0003n.pdf. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>