Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tahitian vanilla originated in Maya forests, says UC Riverside botanist

Team led by Pesach Lubinsky identifies enigmatic orchid’s origins; traces its Pacific voyage via Spanish and French trading ships

The origin of the Tahitian vanilla orchid, whose cured fruit is the source of the rare and highly esteemed gourmet French Polynesian spice, has long eluded botanists. Known by the scientific name Vanilla tahitensis, Tahitian vanilla is found to exist only in cultivation; natural, wild populations of the orchid have never been encountered.

Now, a team of investigators led by Pesach Lubinsky, a postdoctoral researcher with Norman Ellstrand, a professor of genetics in UC Riverside's Department of Botany and Plant Sciences, claims to have traced Tahitian vanilla back to its true origins.

In the August issue of the American Journal of Botany, Lubinsky and colleagues use genetic and ethnohistoric analysis to argue that Tahitian vanilla began its evolutionary journey as a pre-Columbian Maya cultivar inside the tropical forests of Guatemala.

"All the evidence points in the same direction," Lubinsky said. "Our DNA analysis corroborates what the historical sources say, namely, that vanilla was a trade item brought to Tahiti by French sailors in the mid-19th century. The French Admiral responsible for introducing vanilla to Tahiti, Alphonse Hamelin, used vanilla cuttings from the Philippines. The historical record tells us that vanilla – which isn't native to the Philippines – was previously introduced to the region via the Manila Galleon trade from the New World, and specifically from Guatemala."

The Manila galleons (1565-1815) were Spanish trading ships that sailed once or twice each year across the Pacific Ocean between Manila in the Philippines and Acapulco, Mexico. The ships brought Chinese porcelain, silk, ivory, spices, and other exotic goods to Mexico in exchange for New World silver.

The genetic data Lubinsky and his colleagues obtained confirmed that the closest relatives to Tahitian vanilla, from among 40 different Vanilla species they analyzed from across the world, were two species that grow naturally only in the tropical forests of Central America: Vanilla planifolia and Vanilla odorata. V. planifolia is also the primary species cultivated for commercial vanilla, and is grown principally in Madagascar and Indonesia. V. odorata has never been cultivated.

Yet, even with this initial genetic data, the researchers faced a conundrum. They could find no Tahitian vanilla growing wild in Guatemala, which is where its closest relatives grew. The researchers decided to give their genetic data a second look. This time, by comparing patterns of relatedness in DNA sequences from both the nucleus and the chloroplast (a plant cell's photosynthetic factory), they discovered that Tahitian vanilla fit the pattern of being a hybrid offspring between V. planifolia and V. odorata.

"And that's where the Maya cultivators come in," Lubinsky explained. "The pre-Columbian Maya had been managing their forests for millennia to cultivate cacao and to make chocolate, and we know they were also cultivating vanilla to use it as a chocolate spice. The Maya created these forest gardens by introducing different types of species of wild cacao and vanilla from the surrounding forests, which meant that species that had previously been geographically separated were then able to hybridize because they were in the same place. That's the scenario we present in our research paper for how Tahitian vanilla got started. It is an evolutionary product, but also a Maya artifact."

Seung-Chul Kim, an assistant professor of systematics in the Department of Botany and Plant Sciences and a coauthor on the research paper, served as an advisor to Lubinsky on the project.

"Pesach has demonstrated that Vanilla species can exchange genes quite frequently across species barriers," Kim said. "This provides an opportunity to breed new commercial varieties of vanilla through hybridization in the future."

Lubinsky, Kim and their colleagues plan to do further research on vanilla. In January 2009, they will begin mapping cacao-vanilla forest gardens in Belize, southern Mexico and Guatemala. They also are actively advising on sustainable agricultural development projects using vanilla in Mexico and Belize, and have plans to assemble a vanilla germplasm collection.

Lubinsky and Kim were joined in the research by Kenneth M. Cameron of the University of Wisconsin, Madison, Wis.; María Carmen Molina of Escuela Superior de Ciencias Experimentales y Tecnología, Móstoles, Spain; Maurice Wong and Sandra Lepers-Andrzejewski of the Etablissement Vanille de Tahiti, French Polynesia; and Arturo Gómez-Pompa of the Universidad Veracruzana, Veracruz, Mexico. A UCR professor emeritus of botany who was named a University Professor, Gómez-Pompa is now the director of the Universidad Veracruzana's Centro de Investigaciones Tropicales (Center of Tropical Research or CITRO). He also served as Lubinsky's advisor on the research project.

The research was funded by the Graduate Research Fellowship Program of the National Science Foundation; the University of California Institute for Mexico and the United States (UC MEXUS); a University of California Office of the President Pacific Rim mini-grant; and UCR's Department of Botany and Plant Sciences.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>