Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tahitian vanilla originated in Maya forests, says UC Riverside botanist

26.08.2008
Team led by Pesach Lubinsky identifies enigmatic orchid’s origins; traces its Pacific voyage via Spanish and French trading ships

The origin of the Tahitian vanilla orchid, whose cured fruit is the source of the rare and highly esteemed gourmet French Polynesian spice, has long eluded botanists. Known by the scientific name Vanilla tahitensis, Tahitian vanilla is found to exist only in cultivation; natural, wild populations of the orchid have never been encountered.

Now, a team of investigators led by Pesach Lubinsky, a postdoctoral researcher with Norman Ellstrand, a professor of genetics in UC Riverside's Department of Botany and Plant Sciences, claims to have traced Tahitian vanilla back to its true origins.

In the August issue of the American Journal of Botany, Lubinsky and colleagues use genetic and ethnohistoric analysis to argue that Tahitian vanilla began its evolutionary journey as a pre-Columbian Maya cultivar inside the tropical forests of Guatemala.

"All the evidence points in the same direction," Lubinsky said. "Our DNA analysis corroborates what the historical sources say, namely, that vanilla was a trade item brought to Tahiti by French sailors in the mid-19th century. The French Admiral responsible for introducing vanilla to Tahiti, Alphonse Hamelin, used vanilla cuttings from the Philippines. The historical record tells us that vanilla – which isn't native to the Philippines – was previously introduced to the region via the Manila Galleon trade from the New World, and specifically from Guatemala."

The Manila galleons (1565-1815) were Spanish trading ships that sailed once or twice each year across the Pacific Ocean between Manila in the Philippines and Acapulco, Mexico. The ships brought Chinese porcelain, silk, ivory, spices, and other exotic goods to Mexico in exchange for New World silver.

The genetic data Lubinsky and his colleagues obtained confirmed that the closest relatives to Tahitian vanilla, from among 40 different Vanilla species they analyzed from across the world, were two species that grow naturally only in the tropical forests of Central America: Vanilla planifolia and Vanilla odorata. V. planifolia is also the primary species cultivated for commercial vanilla, and is grown principally in Madagascar and Indonesia. V. odorata has never been cultivated.

Yet, even with this initial genetic data, the researchers faced a conundrum. They could find no Tahitian vanilla growing wild in Guatemala, which is where its closest relatives grew. The researchers decided to give their genetic data a second look. This time, by comparing patterns of relatedness in DNA sequences from both the nucleus and the chloroplast (a plant cell's photosynthetic factory), they discovered that Tahitian vanilla fit the pattern of being a hybrid offspring between V. planifolia and V. odorata.

"And that's where the Maya cultivators come in," Lubinsky explained. "The pre-Columbian Maya had been managing their forests for millennia to cultivate cacao and to make chocolate, and we know they were also cultivating vanilla to use it as a chocolate spice. The Maya created these forest gardens by introducing different types of species of wild cacao and vanilla from the surrounding forests, which meant that species that had previously been geographically separated were then able to hybridize because they were in the same place. That's the scenario we present in our research paper for how Tahitian vanilla got started. It is an evolutionary product, but also a Maya artifact."

Seung-Chul Kim, an assistant professor of systematics in the Department of Botany and Plant Sciences and a coauthor on the research paper, served as an advisor to Lubinsky on the project.

"Pesach has demonstrated that Vanilla species can exchange genes quite frequently across species barriers," Kim said. "This provides an opportunity to breed new commercial varieties of vanilla through hybridization in the future."

Lubinsky, Kim and their colleagues plan to do further research on vanilla. In January 2009, they will begin mapping cacao-vanilla forest gardens in Belize, southern Mexico and Guatemala. They also are actively advising on sustainable agricultural development projects using vanilla in Mexico and Belize, and have plans to assemble a vanilla germplasm collection.

Lubinsky and Kim were joined in the research by Kenneth M. Cameron of the University of Wisconsin, Madison, Wis.; María Carmen Molina of Escuela Superior de Ciencias Experimentales y Tecnología, Móstoles, Spain; Maurice Wong and Sandra Lepers-Andrzejewski of the Etablissement Vanille de Tahiti, French Polynesia; and Arturo Gómez-Pompa of the Universidad Veracruzana, Veracruz, Mexico. A UCR professor emeritus of botany who was named a University Professor, Gómez-Pompa is now the director of the Universidad Veracruzana's Centro de Investigaciones Tropicales (Center of Tropical Research or CITRO). He also served as Lubinsky's advisor on the research project.

The research was funded by the Graduate Research Fellowship Program of the National Science Foundation; the University of California Institute for Mexico and the United States (UC MEXUS); a University of California Office of the President Pacific Rim mini-grant; and UCR's Department of Botany and Plant Sciences.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>