Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchgrass Produces Biomass Efficiently

25.11.2009
A USDOE and USDA study concluded that 50 million U.S. acres of cropland, idle cropland, and cropland pasture could be converted from current uses to the production of perennial grasses, such as switchgrass, from which biomass could be harvested for use as a biofuel feedstock.

Economically viable production of a perennial grass monoculture from which substantial quantities of biomass are removed annually is expected to require nitrogen fertilizer.

An agronomist at Oklahoma State University, Regents Professor Emeritus Charles Taliaferro, designed and conducted an experiment to determine biomass yield from alternative levels of nitrogen fertilizer for a single and double harvest per year system for four perennial grass species (bermudagrass, flaccidgrass, lovegrass, and switchgrass). Agricultural economics graduate student, Mohua Haque, used the data produced in the field experiments to determine the most economical species, level of nitrogen, and harvest frequency for several sets of nitrogen fertilizer prices and hypothetical biomass prices. The study was funded by the USDA Cooperative State Research, Education, and Extension Service and by Oklahoma State University. Results from the study were published in the November-December issue of the Agronomy Journal.

Haque explains, “For the soil and weather conditions that prevailed at the experiment site for the duration of the study, switchgrass clearly produced more dry biomass per dollar cost than the other three species. If perennial grass for biofuel feedstock is the best alternative for a field, and if the biomass price exceeds the cost of production, the optimal strategy would be to establish switchgrass, and in post-establishment years, to fertilize with 60 pounds of nitrogen per acre per year, and to harvest once per year after senescence.”

If an economically viable system for conversion of biomass from perennial grasses to biofuels is developed, millions of acres may be bid from current uses and seeded to switchgrass.

Results from the study will be incorporated into a model at Oklahoma State University to evaluate the economic potential of alternative cellulosic biofuels production systems for Oklahoma. The goal of the research effort is to construct and solve models to determine the optimal number, size, and locations of cellulosic biorefineries, feedstock production counties, harvest months, fertilizer levels, number of harvest machines, storage strategy, and feedstock transportation flows.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/101/6/1463.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>