Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swine researchers seek answers to fiber's low digestibility

09.09.2010
As interest grows in feeding distillers dried grains with solubles (DDGS) to growing pigs, many questions are being asked about the digestibility of this alternative feed option.

"Previous research shows that while the amount of energy in DDGS is greater than that of corn, pigs have lower digestibility of energy in DDGS than in corn," said Hans H. Stein, U of I associate professor in the Department of Animal Sciences. "Our goal was to find out why."

Stein's team wanted to develop a greater understanding of the digestibility differences between DDGS and corn. He said the biggest difference between corn and DDGS is fiber content. Fiber contributes to the total energy in DDGS, but not much is known about how pigs utilize the fiber in DDGS.

"We want to find ways to improve the utilization of this energy source in a swine diet," he said. "But first we need to understand the role of fiber in DDGS."

... more about:
»Animal »DDGS »Fiber Optic Cables »Swine flu »TDF »pork

Our research demonstrated that overall, the utilization of fiber in DDGS is low – less than 50 percent. Fiber is characterized as soluble or insoluble fiber. The soluble fiber consists of pectins, some hemicelluloses and some oligosaccharides, Stein said.

"Soluble fiber will change the viscosity of the digesta in the intestinal tract while absorbing water and becoming easily fermentable in the intestinal tract," he added.

On the other hand, insoluble fiber will not dissolve in solution and is made up of the hardest part of the plant such as cellulose and lignin. These fibers do not change viscosity in the intestinal tract and they are the most difficult to ferment.

"Pigs utilize soluble fiber very well, almost 90 percent," Stein said. "Unfortunately, most of the fiber in DDGS is insoluble and has a much lower digestibility. This is the reason for the low digestibility of the combined fiber fraction in DDGS. However, if we can do anything to change the solubility of fiber and make it more soluble, we know we can increase the utilization of it."

From a practical standpoint, DDGS's higher insoluble fiber content means more undigested material goes straight into the manure, which in turn creates more manure management issues for producers.

"If there is a higher fiber content in the manure, it creates a thicker slurry which could lead to more solids in the pit," said Matthew Robert, U of I visiting research engineer in the Department of Agricultural and Biological Engineering. "This requires the pit to agitate the slurry for a longer period of time to get the solids moving so it can be pumped out. If more solids are left in the pit after it's pumped, it results in less storage for the future."

In addition, Stein's study also opened doors to new research methods.

"We know that fiber could be measured in many ways," Stein said. "One of the standard methods of measurement, Total Dietary Fiber (TDF), is very expensive. We found a less expensive procedure, Neutral Detergent Fiber (NDF), to be quite effective and very closely correlated to TDF."

In future research projects, this finding can help save money and make research dollars stretch further to help swine producers.

Stein's team is continuing to look for ways to increase the solubility of fiber and in turn, find new ways to require less feed to produce one pound of gain.

This research titled, "Digestibility of dietary fiber in distillers coproducts fed to growing pigs," was published in the Journal of Animal Science by Pedro E. Urriola and Hans H. Stein of the U of I, and Jerry C. Shurson of the University of Minnesota. Funding was provided by the National Pork Board and the Minnesota Pork Producers Association.

Jennifer Shike | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: Animal DDGS Fiber Optic Cables Swine flu TDF pork

More articles from Agricultural and Forestry Science:

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

nachricht Maize pest exploits plant defense compounds to protect itself
28.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>