Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can sweet corn be grown using less atrazine?

19.01.2011
Atrazine is one of the most widely used herbicides in North American corn production, but heated controversy remains over the 50-plus-year-old product.

Several other herbicides are used in corn production, and a host of non-chemical tactics are sometimes used, too. If the use of atrazine is restricted or banned altogether, how will sweet corn growers cope? A recent University of Illinois study shows sweet corn can be grown successfully without atrazine, but given today's approach, perhaps not very often.

"We wanted to know the implications of using less atrazine in current weed management systems of sweet corn," said USDA Agricultural Research Service ecologist at the U of I Marty Williams. "We conducted field studies at locations throughout North America and found that weed control falls apart pretty quickly as atrazine is removed."

Williams said that further restrictions or a complete ban of atrazine would increase occurrences of weed control failure and subsequent yield losses in sweet corn, so finding an alternative is important.

"Atrazine is relied on more heavily in sweet corn than field corn, and an economically comparable herbicide doesn't exist. Prior to our research, it wasn't known if the newest herbicide chemistry enabled the amount of atrazine to be reduced while maintaining yield protection."

As the fate of atrazine remains unknown and voices are heard pro and con, Williams said, his team's recent findings provide a research-based analysis of the implications of using less atrazine in sweet corn production.

Performance consistency of reduced atrazine use in sweet corn will be published in the March issue of Field Crops Research, and is currently available online. Coauthors include Rick Boydston (Agricultural Research Service at Prosser, WA), Ed Peachey (Oregon State University), and Darren Robinson (University of Guelph, Canada).

Field experiments were conducted in the primary North American production areas of sweet corn grown for processing to determine how reduced applications of atrazine would affect weed control and crop yield. One of the newest herbicides available for use in sweet corn, tembotrione, was applied postemergence at a low dose with a range of atrazine doses from 0 to 1 pound per acre. Also, the authors conducted this work in two hybrids differing in canopy architecture and competitive ability with weeds.

Atrazine reduced the risk of poor performance of tembotrione. Atrazine doses up to 1 pound per acre with tembotrione improved grass control and broadleaf weed control in 5 of 8 and 7 of 8 environments, respectively.

"We saw a risk-reducing benefit, in terms of weed control and yield stability, of using some atrazine in most conditions," Williams said. "Of the three environments that had particularly low broadleaf weed control with tembotrione alone, sweet corn yield was improved with low doses of atrazine."

The bottom line, Williams said, is that a small amount of atrazine applied postemergence reduces the risk of herbicide failure. "When atrazine use is reduced, the typical hybrids having poor competitive ability disproportionately release grass and broadleaf weeds and suffer higher crop losses."

Atrazine wasn't needed when other aspects of weed management worked well in reducing weed pressure. For instance, a hybrid with more competitive growth characteristics performed better in systems using less atrazine. "The research also demonstrates room for improvement in non-chemical components of weed management, such as with cultural tactics," Williams said.

"Because atrazine is inexpensive, its use enables growers to reduce the risk of variable weed control and potential crop losses at minimal cost, which means there is little economic incentive for alternatives unless, of course, the herbicide is restricted further or no longer available."

Although weed management systems in corn are dominated by herbicides, a simple replacement herbicide for atrazine doesn't exist in sweet corn. "I believe overcoming such a challenge would be possible", he said. "But knowing how to make the transition will require an investment in sound research."

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>